...
首页> 外文期刊>Spatial vision >Laminar cortical dynamics of visual form and motion interactions during coherent object motion perception
【24h】

Laminar cortical dynamics of visual form and motion interactions during coherent object motion perception

机译:相干物体运动感知过程中视觉形式和运动相互作用的层流皮质动力学

获取原文

摘要

How do visual form and motion processes cooperate to compute object motion when each process separately is insufficient? Consider, for example, a deer moving behind a bush. Here the partially occluded fragments of motion signals available to an observer must be coherently grouped into the motion of a single object. A 3D FORMOTION model comprises five important functional interactions involving the brain’s form and motion systems that address such situations. Because the model’s stages are analogous to areas of the primate visual system, we refer to the stages by corresponding anatomical names. In one of these functional interactions, 3D boundary representations, in which figures are separated from their backgrounds, are formed in cortical area V2. These depth-selective V2 boundaries select motion signals at the appropriate depths in MT via V2-to-MT signals. In another, motion signals in MT disambiguate locally incomplete or ambiguous boundary signals in V2 via MT-to-V1-to-V2 feedback. The third functional property concerns resolution of the aperture problem along straight moving contours by propagating the influence of unambiguous motion signals generated at contour terminators or corners. Here, sparse ‘feature tracking signals’ from, for example, line ends are amplified to overwhelm numerically superior ambiguous motion signals along line segment interiors. In the fourth, a spatially anisotropic motion grouping process takes place across perceptual space via MT-MST feedback to integrate veridical feature-tracking and ambiguous motion signals to determine a global object motion percept. The fifth property uses the MT-MST feedback loop to convey an attentional priming signal from higher brain areas back to V1 and V2. The model’s use of mechanisms such as divisive normalization, endstopping, cross-orientation inhibition, and long-range cooperation is described. Simulated data include: the degree of motion coherence of rotating shapes observed through apertures, the coherent vs. element motion percepts separated in depth during the chopsticks illusion, and the rigid vs. nonrigid appearance of rotating ellipses.
机译:当每个过程分别不足时,视觉形式和运动过程如何协作以计算对象运动?例如,考虑一只鹿在灌木丛后面移动。这里,观察者可用的运动信号的部分被遮挡的片段必须连贯地分组为单个对象的运动。 3D FORMOTION模型包含五个重要的功能交互,涉及解决此类情况的大脑形式和运动系统。由于模型的阶段类似于灵长类动物视觉系统的区域,因此我们通过相应的解剖学名称来指代阶段。在这些功能交互之一中,在皮质区域V2中形成了3D边界表示,其中图形与背景分离。这些深度选择V2边界通过V2-to-MT信号在MT的适当深度选择运动信号。在另一种情况下,MT中的运动信号通过MT到V1到V2的反馈消除了V2中局部不完整或模糊的边界信号。第三个功能特性是通过传播轮廓终止点或拐角处产生的明确运动信号的影响来解决沿直线运动轮廓的光圈问题。在这里,来自例如线端的稀疏“特征跟踪信号”被放大,以压倒沿线段内部数值上较好的模糊运动信号。在第四步中,通过MT-MST反馈跨感知空间进行空间各向异性运动分组过程,以整合垂直特征跟踪和模糊运动信号以确定全局物体运动感知。第五个属性使用MT-MST反馈回路将注意的启动信号从较高的大脑区域传送回V1和V2。描述了该模型对除法归一化,终止,交叉取向抑制和远程合作等机制的使用。模拟数据包括:通过孔观察到的旋转形状的运动连贯程度,在筷子错觉期间在深度上分开的连贯运动与元素运动感知以及旋转椭圆的刚性与非刚性外观。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号