...
首页> 外文期刊>ORL: Journal for oto-rhino-laryngology and its borderlands >Nonlinear mechanics of the inner ear and its relation to otoacoustic emissions: two steps on the way to a mathematical model of DPOAE generation.
【24h】

Nonlinear mechanics of the inner ear and its relation to otoacoustic emissions: two steps on the way to a mathematical model of DPOAE generation.

机译:内耳的非线性力学及其与耳声发射的关系:DPOAE生成数学模型的两个步骤。

获取原文
获取原文并翻译 | 示例
           

摘要

Among clinical users of the registration of distortion product otoacoustic emissions (DPOAE), the understanding of the basic causality and interpretation of the phenomenon is not yet widely spread, nor is the expected influence of the middle ear and ear canal clear. On the other side, the effort in mathematical modeling of middle and inner ear structures is driven very far by now. We are convinced, though, that the essentials of an effect as DPOAE generation must be understandable from quite simple models. In a first step de Boer's one-dimensional model was adopted and expanded by a weak frictional and a weak elastic nonlinearity, respectively. By means of perturbation theory the weakly nonlinear problem is converted in an approximation series of linear problems. So it is solvable by the common methods of linear differential equations (DEs), above all the superposition principle can be used. At the same time a structure of causality is introduced: Sources for outgoing waves are in first order approximation formed by incoming waves, and so they can be localized. The calculations show clearly that of all six cubic distortions only the 2f(1) - f(2) term does have a source in its 'allowed' region and so can travel outward. We can use the calculated DPOAE to study the influence of middle ear, external ear canal and probe plug. Some problems remain: the weakly nonlinear model in first order does not give account for proper L(dp) = f(L(1), L(2)) and L(dp) = f(f(2)/f(1)) dependency, nor does it deliver additional sources or the effect of additional suppressor tones. In a second step, therefore, we replace de Boer's simple model basilar membrane (BM) by a doubly resonant, coupled tectorial/basilar membrane (TM/BM) system. By feedback now we introduce a strong nonlinearity, which we can mathematically care for by an iterative feedback loop. The algorithm shapes the incoming waves according to strong compressive nonlinearity. More relastic incoming waves yield better source terms, and after optimization of the mistuning function between TM and BM the model now is able to deliver qualitatively correct L(dp) (L(1),L(2)) and L(dp)(f(2)/f(1)) dependencies.
机译:在注册畸变产物耳声发射(DPOAE)的临床用户中,对基本因果关系的理解和对该现象的解释尚未广泛传播,中耳和耳道的预期影响也不清楚。另一方面,到目前为止,对中耳和内耳结构进行数学建模的工作已经非常深入。但是,我们深信,必须通过非常简单的模型才能理解DPOAE生成效果的本质。第一步,采用de Boer的一维模型,并分别通过弱摩擦和弱弹性非线性对其进行扩展。借助摄动理论,将弱非线性问题转换为线性问题的近似序列。因此,可以通过线性微分方程(DEs)的常用方法解决,首先可以使用叠加原理。同时,引入了因果关系的结构:输出波的源是由入射波形成的一阶近似值,因此可以对其进行定位。计算清楚地表明,在所有六个立方畸变中,只有2f(1)-f(2)项确实在其“允许”区域中具有源,因此可以向外传播。我们可以使用计算出的DPOAE研究中耳,外耳道和探针的影响。仍然存在一些问题:一阶弱非线性模型没有考虑适当的L(dp)= f(L(1),L(2))和L(dp)= f(f(2)/ f(1) ))依赖性,也不会提供其他来源或其他抑制音的效果。因此,在第二步中,我们用双共振耦合的盖膜/基底膜(TM / BM)系统代替了de Boer的简单模型基底膜(BM)。现在,通过反馈,我们引入了强大的非线性,我们可以在数学上通过迭代的反馈回路来照顾。该算法根据强烈的压缩非线性对入射波进行整形。更多的回弹波会产生更好的源项,并且在优化了TM和BM之间的微调功能之后,该模型现在能够提供定性正确的L(dp)(L(1),L(2))和L(dp)( f(2)/ f(1))依赖性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号