首页> 外文期刊>Solid state ionics >In situ ~(57)Fe and ~(119)Sn Moessbauer effect studies of the electrochemical reaction of lithium with mechanically alloyed SnFe
【24h】

In situ ~(57)Fe and ~(119)Sn Moessbauer effect studies of the electrochemical reaction of lithium with mechanically alloyed SnFe

机译:机械合金化的SnFe与锂的电化学反应的原位〜(57)Fe和〜(119)Sn的Moessbauer效应研究

获取原文
获取原文并翻译 | 示例
           

摘要

The reaction of lithium with SnFe is studied using in situ ~(57)Fe and ~(119)Sn Moessbauer spectroscopy and correlated to results measured using X-ray diffraction. During the first discharge of Li/SnFe cells, the cell reaction is approximately 2/3 4.4Li+SnFe->2/3 Li_(4.4)Sn+2/3 Fe+1/3 SnFe. The reaction does not go to completion because the iron which is displaced forms a `skin' on the remaining SnFe, preventing complete reaction. During the first charge (removing Li from the Li-Sn alloys) there are dramatic changes in the ~(57)Fe and ~(119)Sn Moessbauer spectra which indicate that many of the `liberated' Sn atoms `back react' with Fe to form ferromagnetic grains of Sn-Fe alloys. We believe these grains have the bcc Fe structure with some substitutional Sn. The original SnFe is not reformed, although the `skinned' original SnFe remains. During the next discharge, these Sn-Fe alloy grains react with Li to form Li4.4Sn and Fe again. As the cells are consecutively charged and discharged, the hyperfine magnetic field in the bcc Sn-Fe alloy formed during charge increases to near the value in iron. We take this as evidence that the tin content of this phase gets smaller and smaller with cycle number, implying that there must also be tin grains in the charged electrode. As the cycle number increases, both X-ray diffraction and Moessbauer spectroscopy show that the amount of unreacted SnFe in the electrode gets smaller and smaller, suggesting that the Fe `skin' on the unreacted particles is slowly breached. Once the cell capacity decays to about 50% of its initial value, X-ray diffraction and Moessbauer spectroscopy of the charged electrodes (as much Li as possible removed) show electrically disconnected Li_(4.4)Sn, and bcc Sn-Fe alloy which has very small tin content. Cell failure occurs because the grain size of the Li-Sn alloy and Sn-Fe regions becomes larger with cycle number leading to electrical disconnection.
机译:使用原位〜(57)Fe和〜(119)Sn Moessbauer光谱研究了锂与SnFe的反应,并将其与使用X射线衍射测得的结果相关。在Li / SnFe电池首次放电期间,电池反应约为2/3 4.4Li + SnFe-> 2/3 Li_(4.4)Sn + 2/3 Fe + 1/3 SnFe。由于被置换的铁在剩余的SnFe上形成了“表皮”,从而阻止了完全反应,因此反应无法完全完成。在第一次充电(从Li-Sn合金中去除Li)期间,〜(57)Fe和〜(119)Sn Moessbauer光谱发生了巨大变化,这表明许多“解放的” Sn原子“返生”与Fe形成Sn-Fe合金的铁磁晶粒。我们认为这些晶粒具有bcc Fe结构,并具有一些Sn取代基。尽管保留了“已剥皮”的原始SnFe,但原始SnFe没有进行重整。在下一次放电期间,这些Sn-Fe合金晶粒与Li反应,再次形成Li4.4Sn和Fe。随着电池的连续充电和放电,在充电过程中形成的bcc Sn-Fe合金中的超精细磁场增加到接近铁中的值。我们以此为依据,证明该相的锡含量随着循环次数的增加而越来越小,这意味着带电电极中还必须有锡晶粒。随着循环次数的增加,X射线衍射和Moessbauer光谱均显示电极中未反应的SnFe的数量越来越小,这表明未反应的颗粒上的Fe“皮”被缓慢破坏。一旦电池容量衰减到其初始值的大约50%,带电电极(尽可能多地除去Li)的X射线衍射和Moessbauer光谱显示出电断开的Li_(4.4)Sn和bcc Sn-Fe合金锡含量很小。发生电池故障的原因是,随着循环次数的增加,Li-Sn合金和Sn-Fe区域的晶粒尺寸变大,导致断电。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号