...
首页> 外文期刊>Solid state ionics >Solid-state reactive sintering mechanism for proton conducting ceramics
【24h】

Solid-state reactive sintering mechanism for proton conducting ceramics

机译:质子传导陶瓷的固态反应烧结机理

获取原文
获取原文并翻译 | 示例
           

摘要

The recently developed solid-state reactive sintering (SSRS) method significantly simplifies the fabrication process for proton conducting ceramics by combining phase formation, densification, and grain growth into a single high-temperature sintering step. The fabrication simplicity provided by SSRS greatly enhances the potential for deployment of proton conducting ceramics in a number of electrochemical devices. Nevertheless, the mechanisms behind SSRS are still poorly understood. In this report, the SSRSmechanismis clarified through a systematic study of the effect of a suite of metal oxide sintering additives on the phase formation and densification of prototypical proton conducting ceramics BaCe_(0.6)Zr_(0.3)Y_(0.1)O_(3-δ) (BCZY63), BaCe_(0.8)Y_(0.2)O_(3-δ) (BCY20), BaZr_(0.8)Y_(0.2)O_(3-δ) (BZY20), and BaZr_(0.9)Y_(0.1)O_(3-δ) (BZY10). Sintering additives with metal ions having a stable oxidation state of +2 and an ionic radius similar to Zr~(4+) (which easily occupy the Zr~(4+) site of the BaZrO_3 perovskite structure, resulting in the formation of large amounts of defects) produce the best sinterability. Sintering additives with metal ions having multiple stable oxidation states (2+, 3+, 4+etc.) and ionic radii near to Zr~(4+) (which also readily occupy the Zr~(4+) sites of BaZrO_3 perovskite structure, but form fewer amounts of defects) can result in partial sintering by the formation ofmechanically stable highly-porousmicrostructureswith limited grain sizes. Sintering additives with metal ions having stable oxidation states ≥3+ or ionic radii far from Zr~(4+) are unlikely to form a solid solution with BaZrO_3 and yield no effect on sintering behavior (virtually identical to the control sample without any additives). These findings provide a useful guide for the selection of sintering additives to engineer optimal microstructures in proton conducting ceramics and may have potential consequences in other ceramic systems as well.
机译:最近开发的固态反应烧结(SSRS)方法通过将相形成,致密化和晶粒长大结合到一个高温烧结步骤中,大大简化了质子传导陶瓷的制造过程。 SSRS提供的制造简便性极大地提高了在许多电化学装置中部署质子传导陶瓷的潜力。尽管如此,SSRS背后的机制仍知之甚少。在本报告中,通过系统研究一组金属氧化物烧结添加剂对原型质子传导陶瓷BaCe_(0.6)Zr_(0.3)Y_(0.1)O_(3-δ)的相形成和致密化的影响,阐明了SSRS机理。 )(BCZY63),BaCe_(0.8)Y_(0.2)O_(3-δ)(BCY20),BaZr_(0.8)Y_(0.2)O_(3-δ)(BZY20)和BaZr_(0.9)Y_(0.1) O_(3-δ)(BZY10)。具有稳定的+2氧化态和类似于Zr〜(4+)的离子半径的金属离子的烧结添加剂(容易占据BaZrO_3钙钛矿结构的Zr〜(4+)位点,导致大量形成缺陷)产生最佳的烧结性。具有多种稳定氧化态(2 +,3 +,4 +等)和接近Zr〜(4+)的离子半径(也容易占据BaZrO_3钙钛矿结构的Zr〜(4+)位)的金属离子的烧结添加剂,但形成的缺陷数量较少)可通过形成具有有限晶粒尺寸的机械稳定的高孔微结构而导致部分烧结。具有稳定的氧化态≥3+或离子半径远离Zr〜(4+)的金属离子的烧结添加剂不太可能形成具有BaZrO_3的固溶体并且不会对烧结行为产生影响(与不含任何添加剂的对照样品几乎相同) 。这些发现为选择烧结添加剂以工程化质子传导陶瓷中的最佳微结构提供了有用的指导,并且在其他陶瓷系统中也可能产生潜在的后果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号