...
首页> 外文期刊>Solar physics >Numerical magnetohydrodynamic experiments for testing the physical mechanisms of coronal mass ejections acceleration
【24h】

Numerical magnetohydrodynamic experiments for testing the physical mechanisms of coronal mass ejections acceleration

机译:数值磁流体动力学实验,测试冠状物质抛射加速的物理机制

获取原文
获取原文并翻译 | 示例

摘要

Analysis of observations from both space-borne (LASCO/SOHO, Skylab and Solar Maximum Mission) and ground-based (Mauna Loa Observatory) instruments show that there are two types of coronal mass ejections (CMEs), fast CMEs and slow CMEs. Fast CMEs start with a high initial speed, which remains more or less constant, while slow CMEs start with a low initial speed, but show a gradual acceleration. To explain the difference between the two types of CMEs, Low and Zhang (2002) proposed that it resulted from a difference in the initial topology of the magnetic fields associated with the underlying quiescent prominences, i.e., a normal prominence configuration will lead to a fast CME, while an inverse quiescent prominence results in a slow CME. In this paper we explore a different scenario to explain the existence of fast and slow CMEs. Postulating only an inverse topology for the quiescent prominences, we show that fast and slow CMEs result from different physical processes responsible for the destabilization of the coronal magnetic field and for the initiation and launching of the CME. We use a 2.5-D, time-dependent streamer and flux-rope magnetohydrodynamic (MHD) model (Wu and Guo, 1997) and investigate three initiation processes, viz. (1) injecting of magnetic flux into the flux-rope, thereby causing an additional Lorentz force that will destabilize the streamer and launch a CME (Wu et al., 1997, 1999); (2) draining of plasma from the flux-rope and triggering a magnetic buoyancy force that causes the flux-rope to lift and launch a CME; and (3) introducing additional heating into the flux-rope, thereby simulating an active-region flux-rope accompanied by a flare to launch a CME. We present 12 numerical tests using these three driving mechanisms either alone or in various combinations. The results show that both fast and slow CMEs can be obtained from an inverse prominence configuration subjected to one or more of these three different initiation processes.
机译:从星载仪器(LASCO / SOHO,Skylab和太阳最大任务)和地基仪器(莫纳·洛阿天文台)的观测分析表明,有两种类型的日冕物质抛射(CME),快速CME和慢CME。快速CME以较高的初始速度开始,该速度或多或少保持恒定,而慢速CME以较低的初始速度开始,但显示出逐渐的加速度。为了解释这两种类型的CME之间的差异,Low和Zhang(2002)提出,这是由于与基础静态凸起相关的磁场初始拓扑结构的差异引起的,即正常的凸起结构会导致快速的运动。 CME,而反静态突出会导致CME变慢。在本文中,我们探索了另一种情况来解释快速CME和慢速CME的存在。我们仅假设静态突出的逆拓扑,我们表明快速和慢速CME是由不同的物理过程导致的,这些物理过程负责冠状磁场的不稳定以及CME的启动和发射。我们使用一个2.5D随时间变化的拖缆和磁通量磁流体动力学(MHD)模型(Wu和Guo,1997),并研究了三个启动过程,即。 (1)将磁通量注入磁通量绳中,从而产生额外的洛伦兹力,这将使拖缆不稳定并发射CME(Wu等人,1997,1999); (2)从助焊剂中排出血浆并触发磁浮力,从而引起助焊剂提起并启动CME; (3)在助焊剂绳中引入额外的热量,从而模拟活动区域的助焊剂绳并伴随着火炬发射CME。我们目前使用这三种驱动机制单独或以多种组合形式进行了12次数值测试。结果表明,通过经历这三种不同引发过程中的一种或多种的反向突出构型,可以同时获得快速CME和缓慢CME。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号