...
首页> 外文期刊>Soil Biology & Biochemistry >Nanoscale evidence of contrasted processes for root-derived organic matter stabilization by mineral interactions depending on soil depth
【24h】

Nanoscale evidence of contrasted processes for root-derived organic matter stabilization by mineral interactions depending on soil depth

机译:取决于土壤深度的矿物相互作用通过根源稳定有机物的对比过程的纳米尺度证据

获取原文
获取原文并翻译 | 示例

摘要

Up to now stabilization of organic matter (OM) in soils due to mineral interactions has been assessed mainly by correlations between carbon and iron and/or aluminum oxides evidencing that metal oxides may be principal stabilization agents. The nature and Unorphology of stabilized OM are poorly known. Taking advantage of a field experiment, the aim of our study was to analyze the fate of C-13 and N-15 labeled root material at 30 and 90 cm depths after three years of incubation and to characterize the nature of OM stabilized by interactions with metal oxides. Our methodological approach included isolation of metal oxides by physical fractionation and visualization of their interaction with OM using NanoSIMS. We concentrated metal oxides in a fraction corresponding to our objectives: the heavy fraction (>3 g cm(-3)) of fine silt. NanoSIMS analyses of this fraction allowed us to locate unlabeled OM and OM either double labeled or carrying one single label in association with metal oxides. Our results suggest that decoupling of C and N may have happened during OM stabilization within the timeframe of the 3 year field experiment. Scanning electron microscopy (SEM) after NanoSIMS analyzes, indicated that N-15 labeled OM at 90 cm were well-defined ovoid OM particles resembling to microbial cells in interaction with Fe, Al and Ti oxides. At 30 cm depth, OM associated with metal oxides was C-13 and N-15 labeled unstructured material, possibly derived from plant debris. We suggest that at the two soil depths under investigation different processes might be at work, leading to association of OM with mineral compounds of the isolated fraction: in upper soil layers, decomposed plant material may directly interact with metal oxides, whereas in deep mineral soil, OM could mainly interact with metal oxides after microbial turnover. Both types of interactions may be fairly stable as they persisted after ultrasonication and salt extraction. (C) 2015 Elsevier Ltd. All rights reserved.
机译:到目前为止,主要是通过碳与铁和/或氧化铝之间的相互关系评估了由于矿物相互作用而导致的土壤中有机物(OM)的稳定,证明金属氧化物可能是主要的稳定剂。稳定的OM的性质和非形态学知之甚少。利用田间实验的优势,我们的研究目的是分析经过3年孵育后在30和90 cm深度处C-13和N-15标记的根部材料的去向,并表征通过与金属氧化物。我们的方法学方法包括通过物理分级分离金属氧化物,并使用NanoSIMS可视化其与OM的相互作用。我们将金属氧化物的浓缩程度与我们的目标相对应:细粉砂的较重部分(> 3 g cm(-3))。对这一部分的NanoSIMS分析使我们能够定位未标记的OM,以及与金属氧化物相关联的带有双重标记或带有一个单一标记的OM。我们的结果表明,在3年现场实验的时间范围内,OM稳定过程中可能发生了C和N的解耦。 NanoSIMS分析后的扫描电子显微镜(SEM)表明,在90 cm处N-15标记的OM是定义明确的卵形OM颗粒,类似于与Fe,Al和Ti氧化物相互作用的微生物细胞。在30厘米深处,与金属氧化物相关的OM为C-13和N-15标记的非结构化材料,可能源自植物碎片。我们建议,在所研究的两个土壤深度,可能采用不同的过程,导致OM与分离部分的矿物化合物相关:在上层土壤中,分解的植物材料可能直接与金属氧化物相互作用,而在深层矿物土壤中微生物代谢后,OM可能主要与金属氧化物相互作用。两种类型的相互作用都可能相当稳定,因为它们在超声和盐提取后仍然存在。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号