...
首页> 外文期刊>Soil Biology & Biochemistry >Carbon transfer from maize roots and litter into bacteria and fungi depends on soil depth and time
【24h】

Carbon transfer from maize roots and litter into bacteria and fungi depends on soil depth and time

机译:碳从玉米根和凋落物向细菌和真菌的转移取决于土壤的深度和时间

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Plant-derived carbon (C) transfer to soil is one of the important factors controlling the size and structure of the belowground microbial community. The present study quantifies this plant-derived C incorporation into abiotic and biotic C pools in top- and subsoil in an arable field over five years. Stable isotope analysis was used to determine the incorporation of maize root and shoot litter C into soil organic C (SOC), extractable organic C (EOC), total microbial biomass (C-mic), ergosterol and phospholipid fatty acids (PLFAs). The following treatments were investigated: corn maize (CM), providing root- and shoot-derived C (without corncobs), fodder maize (FM), providing only root-derived C, and wheat plus maize shoot litter amendment (WL), providing only shoot-derived maize C. Wheat plants (W) without maize litter amendment served as control. Soil samples were taken each September directly before harvest from 2009 to 2013. During the experiment, the maize-derived C signal increased in SOC, EOC, Cmic, ergosterol, bacterial and fungal PLFAs in the topsoil (0-10 cm). Although total maize shoot C input was threefold lower than maize root C input, similar relative amounts of maize C derived from shoots and roots were incorporated into the different C pools in the WL and the FM treatments, indicating the importance of shoot-derived C sources for microorganisms in the topsoil. An additive effect of both C sources was found in the CM treatment with almost twice as much maize-derived C in the respective pools. Furthermore, the proportion of maize-derived C varied between the different pools with lower incorporation into the total SOC (17%) and total EOC (24%) pools and higher incorporation ratios of maize C into PLFAs of different microbial groups (29% in Gram-positive (Gr(+)) bacterial PLFA-C, 44% in Gram-negative (Gr(-)) bacterial PLFA-C, 69% in fungal PLFA-C and 78% in ergosterol) in the CM treatment in topsoil after five years. After the third and fifth vegetation periods, we also detected maize-derived C in the rooted zone (40-50 cm depth) and the root-free zone (60-70 cm depth). The maize-derived C incorporation was lower in subsoil C pools in comparison to topsoil C pools. In the root-free zone, the maize-derived C was found to be 2% in total SOC, 28% in total EOC, 9% in Gr(+) bacterial PLFA-C, 20% in Gr(-) bacterial PLFA-C and 53% in fungal PLFA-C. Saprotrophic fungi incorporated maize-derived C in all soil depths to a greater degree than Gr(+) and Gr(-) bacteria, indicating the importance of saprotrophic fungi in this agroecosystem. (C) 2015 Elsevier Ltd. All rights reserved.
机译:植物来源的碳(C)向土壤的转移是控制地下微生物群落大小和结构的重要因素之一。本研究量化了这种植物来源的碳在五年内整合到耕地表层和地下土壤的非生物和生物碳库中的情况。稳定同位素分析用于确定玉米根和芽凋落物C掺入土壤有机碳(SOC),可萃取有机碳(EOC),总微生物生物量(C-mic),麦角固醇和磷脂脂肪酸(PLFAs)中。研究了以下处理:玉米玉米(CM),提供根和芽的碳(无玉米芯),饲料玉米(FM),仅提供根的碳,小麦加玉米芽凋落物改良剂(WL),提供仅将芽衍生的玉米C。没有玉米垫料改良的小麦植株(W)作为对照。在2009年至2013年的收获前,每年9月直接采集土壤样品。在实验过程中,表土(0-10厘米)中SOC,EOC,Cmic,麦角固醇,细菌和真菌PLFA中玉米衍生的C信号增加。尽管玉米芽C的总输入量比玉米根C的输入量低三倍,但在WL和FM处理中,将来自芽和根的相似量的玉米C掺入了不同的C库中,这表明了来源于芽的C源的重要性。用于表土中的微生物。在CM处理中发现了两种碳源的累加效应,在相应的库中,玉米衍生的碳几乎是两倍。此外,玉米中碳的比例在不同的库中有所不同,总SOC(17%)和EOC(24%)库中的掺入量较低,而玉米C在不同微生物组的PLFA中的掺入率较高(在玉米中为29%)。在表层土壤CM处理中,革兰氏阳性(Gr(+))细菌PLFA-C,革兰氏阴性(Gr(-))细菌PLFA-C,真菌PLFA-C占69%,麦角固醇占78%)五年后。在第三和第五个植被期之后,我们还在生根区(深度为40-50厘米)和无根区(深度为60-70厘米)中检测到了玉米衍生的碳。与表层碳库相比,地下土壤C库中玉米衍生的碳掺入量较低。在无根区,发现玉米来源的碳占总SOC的2%,总EOC的28%,Gr(+)细菌PLFA-C的9%,Gr(-)细菌PLFA-的20% C和53%的真菌PLFA-C。腐生真菌在所有土壤深度中都掺入了玉米衍生的碳,比Gr(+)和Gr(-)细菌的吸收程度更高,这表明在该农业生态系统中,腐化真菌的重要性。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号