首页> 外文期刊>Soil Biology & Biochemistry >Increased belowground carbon inputs and warming promote loss of soil organic carbon through complementary microbial responses
【24h】

Increased belowground carbon inputs and warming promote loss of soil organic carbon through complementary microbial responses

机译:地下碳输入的增加和变暖通过互补的微生物反应促进土壤有机碳的流失

获取原文
获取原文并翻译 | 示例
           

摘要

Current carbon cycle-climate models predict that future soil carbon storage will be determined by the balance between CO2 fertilization and warming. However, it is uncertain whether greater carbon inputs to soils with elevated CO2 will be sequestered, particularly since warming hastens soil carbon decomposition rates, and may alter the response of soils to new plant inputs. We studied the effects of elevated CO2 and warming on microbial soil carbon decomposition processes using laboratory manipulations of carbon inputs and soil temperature. We incubated soils from the Aspen Free Air CO2 Enrichment experiment, where no accumulation of soil carbon has been observed despite a decade of increased carbon inputs to soils under elevated CO2. We added isotopically-labeled sucrose to these soils in the laboratory to mimic and trace the effects of increased carbon inputs on soil organic carbon decomposition and its temperature sensitivity. Sucrose additions caused a positive priming of soil organic carbon decomposition, demonstrated by increased respiration derived from soil carbon, increased microbial abundance, and a shift in the microbial community towards faster growing microorganisms. Similar patterns were observed for elevated CO2 soils, suggesting that the priming effect was responsible for reductions in soil carbon accumulation at the site. Laboratory warming accelerated the rate of the priming effect, but the magnitude of the priming effect was not different amongst temperatures, suggesting that the priming effect was limited by substrate availability, not soil temperature. No changes in substrate use efficiency were observed with elevated CO2 or warming. The stimulatory effects of warming on the priming effect suggest that increased belowground carbon inputs from CO2 fertilization are not likely to be stored in mineral soils. (C) 2014 The Authors. Published by Elsevier Ltd.
机译:当前的碳循环气候模型预测,未来的土壤碳储量将取决于二氧化碳施肥和变暖之间的平衡。但是,不确定是否会封存更多的二氧化碳输入到二氧化碳含量较高的土壤中,特别是因为变暖会加速土壤的碳分解速率,并且可能会改变土壤对新植物输入的响应。我们使用碳输入和土壤温度的实验室操作研究了二氧化碳浓度升高和变暖对微生物土壤碳分解过程的影响。我们通过“阿斯彭(Aspen)自由空气CO2富集实验”对土壤进行了温育,尽管在二氧化碳浓度升高的情况下向土壤中输入的碳增加了十年,但仍未观察到土壤碳的积累。我们在实验室中向这些土壤中添加了同位素标记的蔗糖,以模拟和追踪碳输入增加对土壤有机碳分解及其温度敏感性的影响。蔗糖的添加引起土壤有机碳分解的积极启动,其表现为土壤碳引起的呼吸增加,微生物丰度增加以及微生物群落向生长更快的微生物转移。对于升高的二氧化碳土壤,也观察到了类似的模式,这表明引发效应是造成该地点土壤碳积累减少的原因。实验室升温加快了启动作用的速率,但启动作用的幅度在温度之间没有差异,这表明启动作用受底物可用性而不是土壤温度的限制。随着二氧化碳浓度升高或升温,未观察到基材使用效率的变化。变暖对启动效应的刺激作用表明,来自二氧化碳施肥的地下碳输入量的增加不可能存储在矿物土壤中。 (C)2014作者。由Elsevier Ltd.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号