...
首页> 外文期刊>Chaos >Scaling of geochemical reaction rates via advective solute transport
【24h】

Scaling of geochemical reaction rates via advective solute transport

机译:通过对流溶质运移确定地球化学反应速率

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Transport in porous media is quite complex, and still yields occasional surprises. In geological porous media, the rate at which chemical reactions (e.g., weathering and dissolution) occur is found to diminish by orders of magnitude with increasing time or distance. The temporal rates of laboratory experiments and field observations differ, and extrapolating from laboratory experiments (in months) to field rates (in millions of years) can lead to order-of-magnitude errors. The reactions are transport-limited, but characterizing them using standard solute transport expressions can yield results in agreement with experiment only if spurious assumptions and parameters are introduced. We previously developed a theory of non-reactive solute transport based on applying critical path analysis to the cluster statistics of percolation. The fractal structure of the clusters can be used to generate solute distributions in both time and space. Solute velocities calculated from the temporal evolution of that distribution have the same time dependence as reaction-rate scaling in a wide range of field studies and laboratory experiments, covering some 10 decades in time. The present theory thus both explains a wide range of experiments, and also predicts changes in the scaling behavior in individual systems with increasing time and/or length scales. No other theory captures these variations in scaling by invoking a single physical mechanism. Because the successfully predicted chemical reactions include known results for silicate weathering rates, our theory provides a framework for understanding changes in the global carbon cycle, including its effects on extinctions, climate change, soil production, and denudation rates. It further provides a basis for understanding the fundamental time scales of hydrology and shallow geochemistry, as well as the basis of industrial agriculture. (C) 2015 AIP Publishing LLC.
机译:在多孔介质中的运输非常复杂,仍然偶尔会产生意外情况。在地质多孔介质中,发现化学反应(例如风化和溶解)发生的速率随着时间或距离的增加而减小了几个数量级。实验室实验和现场观测的时间速率不同,从实验室实验(以月为单位)推断到现场速率(以百万年为单位)可能会导致数量级误差。反应是受运输限制的,但是只有引入了虚假的假设和参数,使用标准溶质运输表达式来表征它们才能产生与实验一致的结果。我们之前基于将临界路径分析应用于渗流的聚类统计,开发了一种非反应性溶质输运理论。团簇的分形结构可用于在时间和空间上生成溶质分布。从分布的时间演变计算出的溶质速度与反应速率的标度具有相同的时间依赖性,在广泛的现场研究和实验室实验中,反应时间的标度涵盖了大约十年的时间。因此,本理论既解释了广泛的实验,又预测了随着时间和/或长度尺度的增加,单个系统中尺度行为的变化。没有其他理论可以通过调用单个物理机制来捕捉缩放的这些变化。因为成功预测的化学反应包括已知的硅酸盐风化率结果,所以我们的理论为理解全球碳循环的变化提供了一个框架,包括其对灭绝,气候变化,土壤产量和剥蚀率的影响。它还为了解水文学和浅层地球化学的基本时间尺度以及工业农业的基础提供了基础。 (C)2015 AIP Publishing LLC。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号