...
首页> 外文期刊>Soil & Tillage Research >Spatial and temporal variability of soil CO emission in a sugarcane area under green and slash-and-burn managements
【24h】

Spatial and temporal variability of soil CO emission in a sugarcane area under green and slash-and-burn managements

机译:绿化和纵火焚烧管理下甘蔗地区土壤CO排放的时空变化

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Soil management causes changes in physical, chemical, and biological properties that consequently affect soil CO emission (FCO2). Here, we studied the soil carbon dynamics in areas with sugarcane production in southern Brazil under two different sugarcane management systems: green (G), consisting of mechanized harvesting that produces a large amount of crop residues left on the soil surface, and slash-and-burn (SB), in which the residues are burned before manual harvest, leaving no residues on the soil surface. The study was conducted during the period after harvest in two side-by-side grids installed in adjacent areas, having 60 points each. The aim was to characterize the temporal and spatial variability of FCO2, and its relation to soil temperature and soil moisture, in a red latosol (Oxisol) where G and SB management systems have been recently used. Mean FCO2 emission was 39% higher in the SB plot (2.87omolmpo sp#) when compared to the G plot (2.06omolmpo sp#) throughout the 70-day period after harvest. A quadratic equation of emissions versus soil moisture was able to explain 73% and 50% of temporal variability of FCO2 in SB and G, respectively. This seems to relate to the sensitivity of FCO2 to precipitation events, which caused a significant increase in SB emissions but not in G-managed area emissions. FCO2 semivariogram models were mostly exponential in both areas, ranging from 72.6 to 73.8m and 63.0 to 64.7m for G and SB, respectively. These results indicate that the G management system results in more homogeneous FCO2 when spatial and temporal variability are considered. The spatial variability analysis of soil temperature and soil moisture indicates that those parameters do not adequately explain the changes in spatial variability of FCO2, but emission maps are clearly more homogeneous after a drought period when no rain has occurred, in both sites.
机译:土壤管理导致物理,化学和生物学特性发生变化,从而影响土壤CO排放量(FCO2)。在这里,我们研究了巴西南部采用两种不同的甘蔗管理系统进行甘蔗生产的地区的土壤碳动态:绿色(G),由机械化收割组成,产生大量残留在土壤表面的农作物残渣; -SB(SB),其中残留物在人工收获之前被燃烧,在土壤表面上没有残留物。该研究在收获后的时期内在相邻区域中安装的两个并排网格中进行,每个网格有60个点。目的是在最近使用G和SB管理系统的红色Latosol(Oxisol)中表征FCO2的时空变化及其与土壤温度和土壤湿度的关系。在收获后的70天内,SB图(2.87omolmpo sp#)的平均FCO2排放量比G图(2.06omolmpo sp#)高39%。排放量与土壤水分的二次方程分别解释了SB和G中FCO2随时间变化的73%和50%。这似乎与FCO2对降水事件的敏感性有关,后者导致SB排放量显着增加,但G管理区域的排放量却没有增加。 FCO2半变异函数模型在这两个区域中大多数都是指数模型,G和SB的范围分别为72.6至73.8m和63.0至64.7m。这些结果表明,当考虑空间和时间可变性时,G管理系统会产生更均一的FCO2。对土壤温度和土壤湿度的空间变异性分析表明,这些参数不能充分解释FCO2的空间变异性,但是在干旱期间没有降雨的情况下,两个地点的排放图显然更加均匀。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号