...
首页> 外文期刊>Small >Intelligent and Ultrasensitive Analysis of Mercury Trace Contaminants via Plasmonic Metamaterial-Based Surface-Enhanced Raman Spectroscopy
【24h】

Intelligent and Ultrasensitive Analysis of Mercury Trace Contaminants via Plasmonic Metamaterial-Based Surface-Enhanced Raman Spectroscopy

机译:基于等离子超材料的表面增强拉曼光谱法对痕量汞的智能和超灵敏分析

获取原文
获取原文并翻译 | 示例
           

摘要

Since the first introduction by Adleman in 1994, the DNA logic gates have been considered as the future of computation technology where their small size is a distinct advantage over the conventional top-down semiconductor technology. However, immediate interest has been particularly paid to diversifying applications of the logic circuits as smart sensing and diagnostic platforms owing to the unique properties of DNA such as self-assembly, specific recognition and conformation modulation upon exposing to external stimuli (i.e. metallic ions, proteins). Along this line, DNA-based systems (e.g. DNAzymes, molecular beacons, Guanine-rich oligonucleotides (G-quadruplexes), aptamers have been devised on different nanometer scale carriers such as graphene, graphene oxide, solid-state nanochannels, quantum dots, and gold nanodisc arrays for various logic gate operations and biosensing applications. Those DNA logic operations mostly rely on fluorescence and enzyme cascades to generate “ON” or “OFF” output signals which involve complex handling and analysis procedures, thus restricting the performance and applications of the sophisticated logic devices. In addition, it still remains very challenging to realize a label-free and switchable DNA logic gate-based biosensing platform that can selectively respond to extremely low concentration of the chemical and biological stimuli.
机译:自1994年Adleman首次提出DNA逻辑门以来,DNA逻辑门已被视为计算技术的未来,与传统的自上而下的半导体技术相比,DNA逻辑门的小优势是其明显的优势。然而,由于DNA的独特特性,例如自组装,特异性识别和暴露于外部刺激(例如金属离子,蛋白质)时的构象调节等特性,人们特别关注将逻辑电路作为智能感测和诊断平台的多样化应用。 )。沿着这条线,已经在不同的纳米级载体(例如石墨烯,氧化石墨烯,固态纳米通道,量子点和用于各种逻辑门操作和生物传感应用的金纳米盘阵列,这些DNA逻辑操作主要依靠荧光和酶级联来生成“ ON”或“ OFF”输出信号,这些信号涉及复杂的处理和分析程序,因此限制了其性能和应用。此外,要实现一种无标签且可切换的基于DNA逻辑门的生物传感平台仍然具有很大的挑战性,该平台可以选择性地响应极低浓度的化学和生物刺激。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号