...
首页> 外文期刊>Small >Gold-Conjugated Protein Nanoarrays through Block-Copolymer Lithography: From Fabrication to Biosensor Design
【24h】

Gold-Conjugated Protein Nanoarrays through Block-Copolymer Lithography: From Fabrication to Biosensor Design

机译:通过嵌段共聚物光刻技术进行金结合蛋白纳米阵列的研究:从制造到生物传感器设计

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Forming arrays of biomolecules at defined positions with spatial control and resolution down to the single-protein level is a key issue in nanobiotechnology for cell biology, protein screening, biosensors, protein-protein interaction studies, and medical implants.[1]-[7] To achieve this, it is essential to place and immobilize biomolecules at predefined positions with features on the same scale (10 nm) as the three-dimensional conformation of an individual protein molecule.[7] Various lithographic technologies, including electron-beam (e-beam) lithography,[8] nanoimprint lithography,[9], [10] scanning-probe lithography,[1]-[3] colloid lithography,[11], [12] and block-copolymer (BCP) lithography,[13], [14] may have the potential to be used to create arrays of proteins. In practice, however, pattern feature sizes smaller than 30 nm are difficult to achieve by using commercial e-beam lithography, nanoimprint lithography, and colloidal lithography. Scanning-probe techniques, which have proven very effective in the fabrication of multicomponent systems[1]-[3] and nanobioarrays with feature sizes of the order of 50 nm,[3] are time-consuming methods for large-scale production due to serial-processing limitations. Features produced by BCP lithography, on the other hand, are determined by the absolute size of the domain (5-100 nm), which is defined by the molecular weight of the copolymer and the strength of the segmental interaction between the blocks. Since the first successful works on BCP lithography,[13] dense arrays of various functional materials have been fabricated with the use of BCP thin films as templates.[14]-[16] This method is also cost effective and suitable for mass production. However, it is very difficult to place and immobilize biomolecules at the predefined positions afforded by the periodic arrays of BCP holes.
机译:在空间控制和分辨率低至单个蛋白质水平的特定位置形成生物分子阵列是用于细胞生物学,蛋白质筛选,生物传感器,蛋白质-蛋白质相互作用研究和医疗植入物的纳米生物技术的关键问题。[1]-[7 ]为此,必须将生物分子放置并固定在预定位置,其特征与单个蛋白质分子的三维构象具有相同的尺度(10 nm)。[7]各种光刻技术,包括电子束(e-beam)光刻,[8]纳米压印光刻,[9],[10]扫描探针光刻,[1]-[3]胶体光刻,[11],[12]和嵌段共聚物(BCP)光刻技术,[13],[14]可能具有用于创建蛋白质阵列的潜力。然而,实际上,通过使用商业电子束光刻,纳米压印光刻和胶体光刻难以实现小于30 nm的图案特征尺寸。扫描探针技术已被证明在多组分系统[1]-[3]和特征尺寸为50 nm的纳米生物阵列[3]的制造中非常有效,这是耗时的大规模生产方法。串行处理限制。另一方面,由BCP光刻产生的特征取决于域的绝对尺寸(5-100 nm),该尺寸由共聚物的分子量和嵌段之间的嵌段相互作用强度决定。自从BCP光刻技术的第一项成功工作以来,就已经使用BCP薄膜作为模板制造了各种功能材料的密集阵列[13]。[14]-[16]这种方法也具有成本效益,适合批量生产。但是,很难将生物分子放置并固定在BCP孔的周期性阵列所提供的预定位置。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号