首页> 外文期刊>Smart Materials & Structures >Porous materials with high negative Poisson's ratios - A mechanism based material design
【24h】

Porous materials with high negative Poisson's ratios - A mechanism based material design

机译:高负泊松比的多孔材料-基于机理的材料设计

获取原文
获取原文并翻译 | 示例
       

摘要

In an effort to tailor functional materials with customized anisotropic properties-stiffness and yield strain, we propose porous materials consisting of flexible mesostructures designed from the deformation of a re-entrant auxetic honeycomb and compliant mechanisms. Using an analogy between compliant mechanisms and a cellular material's deformation, we can tailor the in-plane properties of mesostructures; low stiffness and high strain in one direction and high stiffness and low strain in the other direction. An analytical model is developed to obtain the effective moduli and yield strains of the porous materials by combining the kinematics of a rigid link mechanism and deformation of flexure hinges. A numerical technique is implemented with the analytical model for the nonlinear constitutive relations of the mesostructures and their strain-dependent Poisson's ratios. A finite element analysis (FEA) is used to validate the analytical and numerical models. The designed moduli and yield strain of porous materials with an aluminum alloy are 2 GPa and 0.28% in one direction and 0.2 MPa and 28% in the other direction. These porous materials with mesostructures have high negative Poisson's ratios, v*_(xy) down to -82 due to the large rotation of the link member in the transverse direction caused by the input displacement in the longitudinal direction. The porous materials also show higher moduli for compressive loading due to the contact of flexure hinges. This paper demonstrates that compliant mesostructures can be used for next-generation material design in terms of customized mechanical properties; modulus, strength, strain, and Poisson's ratio. The proposed mesostructures can also be easily manufactured using a conventional cutting method.
机译:为了使功能材料具有定制的各向异性特性(刚度和屈服应变),我们提出了多孔材料,该材料由柔性的介孔结构组成,这些结构是由凹入的膨胀蜂窝的变形和顺应性机构设计而成。通过使用顺应性机制和多孔材料变形之间的类比,我们可以调整介观结构的平面内特性。在一个方向上的低刚度和高应变,在另一个方向上的高刚度和低应变。通过结合刚性连杆机构的运动学和挠性铰链的变形,建立了一个分析模型以获得多孔材料的有效模量和屈服应变。利用解析模型对介观结构的非线性本构关系及其应变相关泊松比进行了数值计算。有限元分析(FEA)用于验证分析模型和数值模型。铝合金多孔材料的设计模量和屈服应变在一个方向上为2 GPa和0.28%,在另一个方向上为0.2 MPa和28%。这些具有介孔结构的多孔材料具有高的负泊松比v * _(xy),低至-82,这是由于连杆构件在纵向方向上的输入位移引起的横向方向上的大旋转所致。由于挠性铰链的接触,多孔材料还显示出更高的压缩载荷模量。本文证明了顺应性的介观结构可以根据定制的机械性能用于下一代材料设计。模量,强度,应变和泊松比。所提出的介观结构还可以使用常规切割方法容易地制造。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号