首页> 外文期刊>Smart Materials & Structures >An experimental artificial-neural-network-based modeling of magneto-rheological fluid dampers
【24h】

An experimental artificial-neural-network-based modeling of magneto-rheological fluid dampers

机译:基于实验神经网络的磁流变流体阻尼器建模

获取原文
获取原文并翻译 | 示例
           

摘要

A static model for a magneto-rheological (MR) damper based on artificial neural networks (ANNs) is proposed, and an intensive and experimental study is presented for designing the ANN structure. The ANN model does not require time delays in the input vector. Besides the electric current signal, only one additional sensor is used to achieve a reliable MR damper structure. The model is experimentally validated with two commercial MR dampers of different characteristics: MR _1 damper with continuous actuation and MR _2 damper with two levels of actuation. The error to signal ratio (ESR) index is used to measure the model accuracy; for both MR dampers, an average value of 6.03% of total error is obtained from different experiments, which are designed to explore the nonlinearities of the MR phenomenon at different frequencies by including the impact of the electric current fluctuations. The proposed ANN model is compared with other well known parametric models; the qualitative and quantitative comparison among the models highlights the advantages of the ANN for representing a commercial MR damper. The ESR index was reduced by the ANN-based model by up to 29% with respect to the parametric models for the MR _1 damper and up to 40% for the MR _2 damper. The force-velocity diagram is used to compare the modeling properties of each approach: (1) the Bingham model cannot describe the hysteresis of both MR dampers and the distribution function of the modeled force varies from the experimental data, (2) the algebraic models have complications in representing the nonlinear behavior of the asymmetric damper (MR _2) and, (3) the ANN-based MR damper can model the nonlinearities of both MR dampers and presents good scalability; the accuracy of the results supports the use of this model for the validation of semi-active suspension control systems for a vehicle, by using nonlinear simulations.
机译:提出了基于人工神经网络(ANN)的磁流变(MR)阻尼器的静态模型,并进行了深入的实验研究,以设计ANN结构。 ANN模型不需要输入向量中的时间延迟。除电流信号外,仅使用一个附加传感器来实现可靠的MR阻尼器结构。该模型已通过两个具有不同特性的商用MR阻尼器进行了实验验证:具有连续驱动的MR _1阻尼器和具有两个驱动级别的MR _2阻尼器。误差信号比(ESR)指数用于衡量模型的准确性;对于这两个MR阻尼器,通过不同的实验可获得平均总误差的6.03%,这些实验旨在通过考虑电流波动的影响来探索不同频率下MR现象的非线性。拟议的人工神经网络模型与其他众所周知的参数模型进行了比较。模型之间的定性和定量比较突出了ANN在代表商用MR阻尼器方面的优势。与基于MR _1阻尼器的参数模型相比,基于ANN的模型将ESR指数降低多达29%,而对于MR _2阻尼器则将其降低了40%。力-速度图用于比较每种方法的建模特性:(1)Bingham模型无法描述两个MR阻尼器的磁滞,并且建模力的分布函数与实验数据有所不同,(2)代数模型(3)基于ANN的MR阻尼器可以对两个MR阻尼器的非线性进行建模,并具有良好的可扩展性;在表示非对称阻尼器(MR _2)的非线性行为方面存在复杂性。结果的准确性支持通过非线性仿真将该模型用于车辆半主动悬架控制系统的验证。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号