...
首页> 外文期刊>Silicates Industriels: Ceramic Science and Technology >Mechanical behaviour of SiC (Hi-Nicalon) fibre-reinforced Si{sub}3N{sub}4 matrix composites under monotonic and fatigue tensile loading
【24h】

Mechanical behaviour of SiC (Hi-Nicalon) fibre-reinforced Si{sub}3N{sub}4 matrix composites under monotonic and fatigue tensile loading

机译:SiC(Hi-Nicalon)纤维增强Si {sub} 3N {sub} 4基复合材料在单调和疲劳拉伸载荷下的力学行为

获取原文
获取原文并翻译 | 示例
           

摘要

Fully dense Hi-Nicalon fibre reinforced Si{sub}3N{sub}4 composites were fabricated by slurry infiltration followed by hot-pressing. The deposition of a pyrolytic carbon coating on the fibres prior to fabrication resulted in a non brittlemechanical behaviour and a great increase in toughness by matrix microcracking and pull-out of the broken fibres. Two types of pyrolytic carbon coatings deposited under different CVD conditions were used in the present study and resulted in clearlydifferent interfacial properties thus mechanical behaviour. Composite "A" exhibited a higher average tensile stress (700 MPa) along with a higher matrix crack density (9 cracks/mm) and shorter pullout length (~100μm) than composite 'B" (630 MPa, 6cracks/mm and 200μm respectively). Mechanical properties were established through hysteresis loop meddling which revealed that interfacial bonding strength and sliding stress were considerably reduced by the use of carbon coating "B". Fatigue propertiesalso appeared to vary according to the fibre-matrix interfacial characteristics. while composite "B" showed a fatigue limit of less than 460 MPa, for composite .A" delayed failure always never occurred for a maximum stress of less than 550 MPa. Thisdifference was attributed to the rapid progression of interface debonding thus fibre overloading and fracture when composites exhibited lower interfacial contribution.
机译:通过浆料浸渗然后热压制备了完全致密的Hi-Nicalon纤维增强Si {sub} 3N {sub} 4复合材料。在制造之前在纤维上沉积热解碳涂层会导致非脆性机械行为,并且由于基体微裂纹和断裂纤维的拉出而大大提高了韧性。在本研究中使用了两种在不同CVD条件下沉积的热解碳涂层,它们的界面特性明显不同,因此具有机械行为。复合材料“ A”比复合材料“ B”(630 MPa,6个裂纹/ mm和200μm)表现出更高的平均拉伸应力(700 MPa),更高的基体裂纹密度(9个裂纹/毫米)和更短的拔出长度(〜100μm)。 )。通过磁滞回线法建立了力学性能,结果表明,使用碳涂层“ B”可大大降低界面粘结强度和滑动应力。疲劳性能也根据纤维-基质界面特性而变化。 “对于复合材料A,其疲劳极限小于460 MPa。”对于最大应力小于550 MPa的情况,从未发生延迟失效。这种差异归因于当复合材料表现出较低的界面贡献时,界面剥离的快速进展,从而导致纤维超载和断裂。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号