...
首页> 外文期刊>Silvae Genetica >Forest Tree Transgenesis and Functional Genomics: From Fast Forward to Reverse Genetics
【24h】

Forest Tree Transgenesis and Functional Genomics: From Fast Forward to Reverse Genetics

机译:林木转基因和功能基因组学:从快速前进到反向遗传学。

获取原文
获取原文并翻译 | 示例
           

摘要

Genomics has become an integral part of the forest tree improvement, and gene structural and expressional data are being produced at an unprecedented rate. However, biological resources in the form of tagged mutants are still lacking in forest trees,which at present is a missing part of tree genomics. The potential bottlenecks here are the steps involving plant transformation, which is instrumental both in reverse and forward genetics strategies aimed at to determine gene function. With few exceptions, genetic transformation is an obligatory final step by which traits are engineered into plants. For basic research transgenesis is the method of choice to confirm gene function, after deductions made through comparative genomics, expression profiles,and mutation analysis. The biological features of long-lived tree species create obstacles as well as provide opportunities to design new approaches to overcome the barriers associated with forest tree genomics. To understand how a cell works we need toknow the function of almost every gene in its genome. Genome sequencing provides a tremendous amount of information for the development of global approaches towards this goal, complementing and enhancing the more traditional (single-gene) approaches. Genome sequencing has been completed in model plant Ara-bidopsis (The Arabidopsis Genome Initiative, 2000) and in rice (GoFF et al, 2002; Yu et al., 2002), a model cereal. Similarly, forest biologists have given enough justification to sequence Populus genome as a model for trees and woody perennials (WuLLSCHLEGER et al., 2002; TAYLOR, 2002), A 6X coverage of the black cottonwood (Populus trichocarpa) genome as first tree genome will be available in public domain by the end of the year 2003 (InternationalPopulus Genome Consortium) Once whole-genome information is available for an organism, the challenge turns from identifying the parts to understanding their function as well as to improving genome structure, thus ushering in the 'post-genomic' era. In the short term, the first goal is to assign some element of function to each of the genes in an organism also referred to as 'functional genomics', and to do this with high-throughput, systematic approaches-Major challenges of functional genomics in treesare to assess tree growth and wood yield. These parameters are important in terms of wood quality like strength and fibre length, and renewable energy resources (CHAFFEY et al., 2002; CAMPBELL et al., 2003; CONFALONIERI et al., 2003). With most of the Populus genome still to be assigned function, the notion of accumulating this information one gene at a time is hard to contemplate. This knowledge gap has been the crucial impetus for developing 'whole-genome' approaches that can acquire functional information, in the form of expression profiles, protein-protein interactions, computational approaches and the response to loss or gain of function by mutation.
机译:基因组学已成为森林树木改良不可或缺的一部分,基因结构和表达数据正以前所未有的速度产生。然而,林木中仍缺乏标记突变体形式的生物资源,目前这是树木基因组学的缺失部分。这里潜在的瓶颈是涉及植物转化的步骤,这对旨在确定基因功能的反向和正向遗传学策略都是有帮助的。除少数例外,遗传转化是将性状工程化到植物中的最后强制步骤。对于基础研究,通过比较基因组学,表达谱和突变分析推论得出,转基因是确认基因功能的选择方法。长寿树种的生物学特征不仅构成障碍,而且为设计新方法以克服与林木基因组学相关的障碍提供了机会。要了解细胞的工作原理,我们需要知道其基因组中几乎每个基因的功能。基因组测序为实现该目标的全球方法提供了大量信息,补充并增强了更传统的(单基因)方法。基因组测序已在模型植物拟南芥(Ara-bidopsis)(拟南芥基因组计划(Arabidopsis Genome Initiative),2000)和水稻(GoFF等,2002; Yu等,2002)中完成。同样,森林生物学家已经给出足够的理由对胡杨基因组进行测序,以作为树木和多年生木本植物的模型(WuLLSCHLEGER等,2002; TAYLOR,2002),将黑杨木(胡杨)基因组的6倍覆盖率作为第一个树木基因组在2003年底之前可以在公共领域使用(InternationalPopulus Genome Consortium)。一旦有机体的全基因组信息可用,挑战就从识别零件转变为了解其功能以及改善基因组结构,从而迎接新挑战。 “后基因组学”时代。在短期内,第一个目标是为生物中的每个基因分配功能的某些元素,也称为“功能基因组学”,并以高通量,系统的方法做到这一点-功能基因组学的主要挑战树木是用来评估树木的生长和木材产量的。这些参数对于木材质量(例如强度和纤维长度)以及可再生能源非常重要(CHAFFEY等,2002; CAMPBELL等,2003; CONFALONIERI等,2003)。由于大多数杨树基因组仍需分配功能,因此很难考虑一次积累一个基因的信息的想法。这种知识鸿沟一直是开发可以获取功能信息的“全基因组”方法的关键动力,这些方法可以通过表达谱,蛋白质-蛋白质相互作用,计算方法以及对突变造成的功能丧失或获得应答的形式获得功能信息。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号