首页> 外文期刊>SIAM Journal on Scientific Computing >A NEW MIXED FORMULATION AND EFFICIENT NUMERICAL SOLUTION OF GINZBURG-LANDAU EQUATIONS UNDER THE TEMPORAL GAUGE
【24h】

A NEW MIXED FORMULATION AND EFFICIENT NUMERICAL SOLUTION OF GINZBURG-LANDAU EQUATIONS UNDER THE TEMPORAL GAUGE

机译:时间尺度下金兹伯格-朗道方程的一种新的混合格式和高效数值解。

获取原文
获取原文并翻译 | 示例
       

摘要

In this paper, we present a new numerical approach to the time-dependent Ginzburg-Landau (GL) equations under the temporal gauge ( zero electric potential gauge). The approach is based on a mixed formulation of the GL equations, which consists of two parabolic equations for the order parameter psi and the magnetic field sigma = curl A, respectively, and a vector ordinary differential equation for the magnetic potential A. A fully linearized Galerkin finite element method is presented for solving the mixed GL system. The new approach offers many advantages on both accuracy and efficiency over existing methods. In particular, the equations for psi and sigma are uniformly parabolic and, therefore, the method provides optimal-order accuracy for the two physical components psi and sigma. Since in the temporal direction, a fully linearized backward Euler scheme is used for psi and sigma and a forward Euler scheme is used for A, respectively, the system is fully decoupled and at each time step, the three variables psi, sigma, and A can be solved simultaneously. Moreover, we present numerical comparisons with two commonly used Galerkin methods for the GL equations under the temporal gauge and the Lorentz gauge, respectively. Our numerical results show that the new approach requires fewer iterations for solving the linear systems arising at each time step and the computational cost for the vector ODE seems neglectable. Several numerical examples in both two-and three-dimensional spaces are investigated.
机译:在本文中,我们为时间量表(零电势量表)下的时间相关的Ginzburg-Landau(GL)方程提供了一种新的数值方法。该方法基于GL方程的混合公式,该方程由两个分别用于阶数参数psi和磁场sigma = curl A的抛物线方程和一个用于磁势A的矢量常微分方程组成。提出了Galerkin有限元方法来求解混合GL系统。与现有方法相比,新方法在准确性和效率上均具有许多优势。特别是,psi和sigma的方程是一致抛物线的,因此,该方法为psi和sigma这两个物理分量提供了最佳的阶精度。由于在时间方向上,对psi和sigma使用了完全线性化的后向Euler方案,对A使用了前向Euler方案,因此系统是完全解耦的,并且在每个时间步上,三个变量psi,sigma和A可以同时解决。此外,我们在时间轨距和洛伦兹轨距下分别使用两种常用的Galerkin方法对GL方程进行数值比较。我们的数值结果表明,该新方法需要较少的迭代来求解每个时间步上出现的线性系统,并且矢量ODE的计算成本似乎可以忽略不计。研究了二维和三维空间中的几个数值示例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号