首页> 外文期刊>SIAM Journal on Control and Optimization >SYMPLECTIC TRANSFORMATION BASED ANALYTICAL ANDNUMERICAL METHODS FOR LINEAR QUADRATIC CONTROLWITH HARD TERMINAL CONSTRAINTS
【24h】

SYMPLECTIC TRANSFORMATION BASED ANALYTICAL ANDNUMERICAL METHODS FOR LINEAR QUADRATIC CONTROLWITH HARD TERMINAL CONSTRAINTS

机译:基于辛变换的具有硬终端约束的线性二次控制的解析和数值方法

获取原文
获取原文并翻译 | 示例
           

摘要

Feedback gain and feedforward input of conventional linear quadratic (LQ) hard terminal controllers tend to infinity at terminal time, so that the conventional controllers have to go open-loop for a short interval before the final time. This short interval is called blind time. To avoid the terminal infinite feedback control gain and feedforward input, new optimal control laws are proposed for hard terminal control of linear time-varying systems. Furthermore, a structure-preserving numerical method is also presented to evaluate the time-varying optimal feedback and feedforward control gains and corresponding optimal trajectory. The analytical and numerical meth-ods being developed here are based on the application of symplectic (canonical) transformation and generating functions of Hamiltonian systems. Different from the existing generating function method for optimal control, the first type of generating function plays a key role in solving the associated Hamiltonian two-point boundary-value problem (TPBVP), while the second generating function is employed to recover the first type. This note uses the second and third types of generating functions to find novel optimal control laws by solving the Hamiltonian TPBVP, which eliminates the infinite control gains of conventional optimal control laws near terminal time. Since the optimal trajectory of the closed-loop system is a solution of the Hamiltonian TPBVP, by using symplecticity of the solution operator of the linear Hamiltonian system, this paper also derives a structure-preserving matrix recursive algorithm for the computation of time-varying optimal control gains and the sys-tems optimal trajectories. Numerical simulations show that this structure-preserving algorithm gives accurate results for relative large discrete steps and keeps geometric properties of the solutions.
机译:常规线性二次(LQ)硬终端控制器的反馈增益和前馈输入在终端时间趋于无穷大,因此常规控制器必须在最终时间之前的短间隔内进行开环。这个短间隔称为盲区时间。为了避免终端的无限反馈控制增益和前馈输入,提出了一种新的最优控制律,用于线性时变系统的硬终端控制。此外,还提出了一种保留结构的数值方法来评估时变最优反馈和前馈控制增益以及相应的最优轨迹。此处开发的分析方法和数值方法基于辛(规范)变换的应用和哈密顿系统的生成函数。与现有的最优控制生成函数方法不同,第一类生成函数在解决相关的汉密尔顿两点边值问题(TPBVP)方面起着关键作用,而第二种生成函数则用于恢复第一类。本说明使用第二和第三类生成函数通过求解哈密顿TPBVP来找到新颖的最优控制律,从而消除了传统的最优控制律在终端时间附近的无限控制增益。由于闭环系统的最优轨迹是哈密顿TPBVP的解,因此通过利用线性哈密顿系统的解算子的辛性,本文还推导了一种时变最优计算的保结构矩阵递推算法。控制增益和系统的最佳轨迹。数值模拟表明,该结构保留算法可以为较大的离散步骤提供准确的结果,并保持解的几何性质。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号