...
首页> 外文期刊>SIAM Journal on Numerical Analysis >Numerical differentiation of approximated functions with limited order-of-accuracy deterioration
【24h】

Numerical differentiation of approximated functions with limited order-of-accuracy deterioration

机译:有限阶次精度劣化的近似函数的数值微分

获取原文
获取原文并翻译 | 示例

摘要

We consider the problem of numerical differentiation of a function f from approximate or noisy values of f on a discrete set of points; such discrete approximate data may result from a numerical calculation (such as a finite element or finite difference solution of a partial differential equation), from experimental measurements, or, generally, from an estimate of some sort. In some such cases it is useful to guarantee that orders of accuracy are not degraded: assuming the approximating values of the function are known with an accuracy of order O(hr), where h is the mesh size, an accuracy of O(hr) is desired in the value of the derivatives of f. Differentiation of interpolating polynomials does not achieve this goal since, as shown in this text, n-fold differentiation of an interpolating polynomial of any degree ≥ (r - 1) obtained from function values containing errors of order O(hr) generally gives rise to derivative errors of order O(hr-n); other existing differentiation algorithms suffer from similar degradations in the order of accuracy. In this paper we present a new algorithm, the LDC method (low degree Chebyshev), which, using noisy function values of a function f on a (possibly irregular) grid, produces approximate values of derivatives f(n) (n = 1, 2...) with limited loss in the order of accuracy. For example, for (possibly nonsmooth) O(hr) errors in the values of an underlying infinitely differentiable function, the LDC loss in the order of accuracy is "vanishingly small": derivatives of smooth functions are approximated by the LDC algorithm with an accuracy of order O(hr -) for all r- < r. The algorithm is very fast and simple; a variety of numerical results we present illustrate the theory and demonstrate the efficiency of the proposed methodology.
机译:我们考虑在离散点集上,函数f与f的近似值或嘈杂值之间的数值微分问题。这种离散的近似数据可以由数值计算(例如偏微分方程的有限元或有限差分解),实验测量结果或通常由某种估算得出。在某些情况下,确保精度的阶数不会降低是很有用的:假设函数的近似值已知的精度为O(hr),其中h是网格大小,精度为O(hr) f的导数的值是期望的。插值多项式的微分不能达到这个目的,因为,如本文所示,从包含阶次为O(hr)的函数值获得的任意次数≥(r-1)的插值多项​​式的n倍微分通常会引起O(hr-n)阶的导数误差;其他现有的区分算法在准确性方面也遭受类似的降级。在本文中,我们提出了一种新的算法LDC方法(低度Chebyshev),该方法在(可能是不规则的)网格上使用函数f的嘈杂函数值,生成导数f(n)的近似值(n = 1, 2 ...),损失的准确性有限。例如,对于潜在的无限微分函数的值中的(可能是非平滑的)O(hr)误差,按精度顺序的LDC损失“消失得很小”:平滑函数的导数通过LDC算法以精度近似所有r-

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号