...
首页> 外文期刊>SIAM Journal on Numerical Analysis >COMPUTATION OF HOPF BIFURCATION WITH BORDERED MATRICES
【24h】

COMPUTATION OF HOPF BIFURCATION WITH BORDERED MATRICES

机译:带边界矩阵的Hopf分叉计算

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Hopf bifurcation for dynamical systems x = f(x, lambda) is characterized by rank deficiency two of A(2) + omega(2)I, where A = f(x)(x, lambda) is an element of R(nxn) is the Jacobian at the Hopf point and +/-i omega are the Hopf eigenvalues. Replacing w(2) by upsilon and allowing upsilon less than or equal to 0 we introduce real and imaginary Hopf matrices A with Hopf numbers upsilon, defining a codimension-2 manifold M(H,upsilon) subset of R(nxn) x R, which can be described by two scalar equations alpha(A, upsilon) = 0, beta(A, upsilon) = 0 given by the solution of certain linear bordered systems. These two scalar equations form a suitable augmentation of f(x, lambda) = 0 for the numerical computation of branches of Hopf points in two-parameter systems. In contrast to [Chu, Govaerts, and Spence, SIAM J. Numer. Anal., 31 (1994), pp. 524-539] we suggest an A-dependent bordering having certain advantages. We construct a scalar test function for Hopf points (in the sense of [Werner, in Bifurcation and Symmetry, Internat. Ser. Numer. Math., 104 (1992), pp. 317-327]) by nonlinear elimination of upsilon from the two scalar equations alpha = 0 and beta = 0. A strict sign change of this test function during numerical path following of equilibria is shown to be equivalent to eigenvalue crossing conditions in (real or imaginary [Werner and Janovsky, in Bifurcation and Chaos, Internat. Ser. Numer. Math., 97 (1991), pp. 377-388]) Hopf bifurcation points and can hence be used for the detection of Hopf points. An extension to Hopf points for mappings (Naimark-Sacker bifurcation) is given. Finally we illustrate our method by several examples, particularly for the computation of Hopf curves in two-parameter families of vector fields. [References: 21]
机译:动力系统x = f(x,lambda)的Hopf分叉的特征是A(2)+ omega(2)I的秩不足二,其中A = f(x)(x,lambda)是R(nxn)的元素)是Hopf点的雅可比行列式,+ /-iω是Hopf特征值。用upsilon替换w(2)并允许upsilon小于或等于0,我们引入具有Hopf数upsilon的实数和虚数Hopf矩阵A,定义R(nxn)x R的余维2流形M(H,upsilon)子集,可以用两个标量方程alpha(A,upsilon)= 0,beta(A,upsilon)= 0(由某些线性有边界系统的解给出)来描述。这两个标量方程形成f(x,lambda)= 0的适当增幅,用于两参数系统中Hopf点的分支的数值计算。与[Chu,Govaerts和Spence,SIAM J. Numer。 Anal。,第31卷,1994年,第524-539页],我们建议A依赖边界具有某些优势。我们通过从框架中非线性消除上sil来为Hopf点构造标量测试函数(在[Werner,in Bifurcation and Symmetry,Internat。Ser。Numer。Math。,104(1992),pp.317-327]中)。两个标量方程alpha = 0和beta =0。在均衡之后的数字路径中,此测试函数的严格符号变化等效于(实或虚[Werner和Janovsky,在分叉和混沌中,Internat [Ser.Numer.Math。,97(1991),pp。377-388])Hopf分叉点,因此可用于检测Hopf点。给出了用于映射的霍普夫点的扩展(Naimark-Sacker分叉)。最后,我们通过几个示例来说明我们的方法,特别是用于矢量场两参数族中Hopf曲线的计算。 [参考:21]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号