...
首页> 外文期刊>SIAM Journal on Matrix Analysis and Applications >RECOVERY OF EIGENVECTORS AND MINIMAL BASES OF MATRIX POLYNOMIALS FROM GENERALIZED FIEDLER LINEARIZATIONS
【24h】

RECOVERY OF EIGENVECTORS AND MINIMAL BASES OF MATRIX POLYNOMIALS FROM GENERALIZED FIEDLER LINEARIZATIONS

机译:广义Fiedler线性化的特征向量和矩阵多项式的最小基的恢复。

获取原文
获取原文并翻译 | 示例
           

摘要

A standard way to solve polynomial eigenvalue problems P(λ)x = 0 is to convert the matrix polynomial P(λ) into a matrix pencil that preserves its elementary divisors and, therefore, its eigenvalues. This process is known as linearization and is not unique, since there are infinitely many linearizations with widely varying properties associated with P(λ). This freedom has motivated the recent development and analysis of new classes of linearizations that generalize the classical first and second Frobenius companion forms, with the goals of finding linearizations that retain whatever structures that P(λ) might possess and/or of improving numerical properties, as conditioning or backward errors, with respect the companion forms. In this context, an important new class of linearizations is what we name generalized Fiedler linearizations, introduced in 2004 by Antoniou and Vologiannidis as an extension of certain linearizations introduced previously by Fiedler for scalar polynomials. On the other hand, the mere definition of linearization does not imply the existence of simple relationships between the eigenvectors, minimal indices, and minimal bases of P(λ) and those of the linearization. So, given a class of linearizations, to provide easy recovery procedures for eigenvectors, minimal indices, and minimal bases of P(λ) from those of the linearizations is essential for the usefulness of this class. In this paper we develop such recovery procedures for generalized Fiedler linearizations and pay special attention to structure-preserving linearizations inside this class.
机译:解决多项式特征值问题P(λ)x = 0的标准方法是将矩阵多项式P(λ)转换为保留其基本除数和特征值的矩阵铅笔。此过程称为线性化,并且不是唯一的,因为存在无限多个线性化,且具有与P(λ)相关的广泛变化的特性。这种自由促使最近开发和分析了新的线性化类别,这些线性化泛化了经典的第一和第二种Frobenius伴随形式,其目的是找到保留P(λ)可能具有的任何结构的线性化和/或改善数值性质,作为条件或向后错误,请注意伴随形式。在这种情况下,重要的一类新的线性化是我们所谓的广义Fiedler线性化,它是由Antoniou和Vologiannidis于2004年引入的,它是Fiedler先前为标量多项式引入的某些线性化的扩展。另一方面,仅线性化的定义并不意味着在特征向量,P(λ)的最小指数和最小基数与线性化之间存在简单关系。因此,给定一类线性化,以提供用于特征向量的简便恢复过程,最小化指标以及线性化的极小P(λ)基数对于此类的有用性至关重要。在本文中,我们为广义Fiedler线性化开发了此类恢复程序,并特别注意此类中的保留结构线性化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号