...
首页> 外文期刊>SIAM Journal on Computing >THE POWER OF STRONG FOURIER SAMPLING: QUANTUM ALGORITHMS FOR AFFINE GROUPS AND HIDDEN SHIFTS
【24h】

THE POWER OF STRONG FOURIER SAMPLING: QUANTUM ALGORITHMS FOR AFFINE GROUPS AND HIDDEN SHIFTS

机译:强傅里叶采样的力量:仿射群和隐藏移位的量子算法

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Many quantum algorithms, including Shor’s celebrated factoring and discrete log algorithms, proceed by reduction to a hidden subgroup problem, in which an unknown subgroup H of a group G must be determined from a quantum state ψ over G that is uniformly supported on a left coset of H. These hidden subgroup problems are typically solved by Fourier sampling: the quantum Fourier transform of ψ is computed and measured. When the underlying group is nonabelian, two important variants of the Fourier sampling paradigm have been identified: the weak standard method, where only representation names are measured, and the strong standard method, where full measurement (i.e., the row and column of the representation, in a suitably chosen basis, as well as its name) occurs. It has remained open whether the strong standard method is indeed stronger, that is, whether there are hidden subgroups that can be reconstructed via the strong method but not by the weak, or any other known, method. In this article, we settle this question in the affirmative. We show that hidden subgroups H of the q-hedral groups, i.e., semidirect products Zq Zp, where q | (p 1), and in particular the affine groups Ap, can be information-theoretically reconstructed using the strong standard method. Moreover, if |H| = p/polylog(p), these subgroups can be fully reconstructed with a polynomial amount of quantum and classical computation. We compare our algorithms to two weaker methods that have been discussed in the literature—the “forgetful” abelian method, and measurement in a random basis—and show that both of these are weaker than the strong standard method. Thus, at least for some families of groups, it is crucial to use the full power of representation theory and nonabelian Fourier analysis, namely, to measure the highdimensional representations in an adapted basis that respects the group’s subgroup structure. We apply our algorithm for the hidden subgroup problem to new families of cryptographically motivated hidden shift problems, generalizing the work of van Dam, Hallgren, and Ip on shifts of multiplicative characters. Finally, we close by proving a simple closure property for the class of groups over which the hidden subgroup problem can be solved efficiently.
机译:许多量子算法,包括Shor著名的因式分解算法和离散对数算法,都归结为一个隐藏的子组问题,在该问题中,必须从G上的一个均匀支持在左陪集上的G上的量子态ψ确定一个G组的未知子H组。这些隐藏的子组问题通常通过傅立叶采样解决:计算和测量ψ的量子傅立叶变换。当基础组是非阿贝尔群时,已经确定了傅里叶采样范式的两个重要变体:弱标准方法(仅测量表示名称)和强标准方法(其中完整测量)(即表示的行和列) (在适当选择的基础上,以及其名称)。强标准方法是否确实更强,即是否存在可以通过强方法而不是弱方法或任何其他已知方法可以重构的隐藏子组,仍然是未知的。在本文中,我们肯定地解决了这个问题。我们显示了q-面体组的隐藏子组H,即半直接乘积Zq Zp,其中q | (p 1),尤其是仿射基团Ap,可以使用强标准方法从信息理论上重建。此外,如果| H | = p / polylog(p),这些子组可以用多项式的量子和经典计算来完全重建。我们将我们的算法与文献中讨论过的两种较弱的方法(“健忘”的阿贝尔方法和随机测量)进行了比较,结果表明这两种方法均比强标准方法更弱。因此,至少对于某些族群而言,至关重要的是要使用表示理论和nonabelian Fourier分析的全部功能,即在尊重该族子组结构的适应性基础上测量高维表示。我们将用于隐藏子组问题的算法应用于新的密码学动机隐藏的移位问题系列,归纳了van Dam,Hallgren和Ip在乘法字符移位方面的工作。最后,我们通过为组类别证明一个简单的闭包属性来解决隐藏的子组问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号