首页> 外文期刊>Separation and Purification Technology >Removal of hexavalent chromium by electrochemical reduction-precipitation: Investigation of process performance and reaction stoichiometry
【24h】

Removal of hexavalent chromium by electrochemical reduction-precipitation: Investigation of process performance and reaction stoichiometry

机译:通过电化学还原沉淀去除六价铬:工艺性能和反应化学计量的研究

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

This work experimentally investigates aqueous Cr(VI) reduction/removal by electrotreatment with mild steel electrode in a batch stirred reactor. Cr(VI) removal is due to simultaneous reduction to Cr(III) followed by precipitation and adsorption of Cr(VI) on Fe(OH)3(s)/Cr(OH)3(s) sludge formed. Cr(VI) adsorbed on sludge increases to maximum 10% and decreases to negligible level with diminishing concentration of Cr(VI) in solution. Concentration of Cr(VI) can be decreased to its discharge limit (0.5 mg/l) in a single process step without addition of any precipitating agent. The highest reduction rate of Cr(VI) was found to be 3.8 mg l~(-1) min~(-1) at lowest initial pH 2 at the beginning (treatment time <1 min) of the run, but Cr(III) in solution remains high due to its high solubility. The Cr(VI) reduction rate varies between 1.38 and 0.89mgl~(-1) min~(-1) at higher initial pH (4.9-10). Among the anions Cl~-, NO_3~-, SO_4~(2-) and PO_4~(3-), PO_4~(3-) is found to inhibit Cr(VI) reduction significantly by around 27% as it enhances oxidation of Fe(II) by dissolved oxygen. Stoichiometry of Cr(VI) reduction was experimentally determined at lower pH (2-3.1) range, where oxidation of Fe(II) by dissolved oxygen and its precipitation can be neglected. Against stoichiometric ratio of ~3 in case of reduction of Cr(VI) by Fe(II), the observed overall molar ratio varies from 2.49 to 2.92. Participation of Fe~0 on the electrode surface(s) in reducing Cr(VI) and accumulation of deposit on electrodes explain the observations including progressive variation.
机译:这项工作实验性地研究了在间歇搅拌反应器中通过低碳钢电极的电处理来还原/去除水中的Cr(VI)。 Cr(VI)的去除是由于同时还原为Cr(III),然后在形成的Fe(OH)3(s)/ Cr(OH)3(s)污泥上沉淀和吸附了Cr(VI)。随着溶液中Cr(VI)浓度的降低,吸附在污泥上的Cr(VI)最多增加10%,并减少到可以忽略的水平。无需添加任何沉淀剂,即可在单个处理步骤中将Cr(VI)的浓度降至其排放极限(0.5 mg / l)。在运行开始时(处理时间<1分钟),在最低初始pH 2时,Cr(VI)的最高还原速率为3.8 mg l〜(-1)min〜(-1),而Cr(III)由于溶液的高溶解度,因此溶液中的α)仍然很高。在较高的初始pH(4.9-10)下,Cr(VI)的还原速率在1.38和0.89mgl〜(-1)min〜(-1)之间变化。在阴离子Cl〜-,NO_3〜-,SO_4〜(2-)和PO_4〜(3-)中,发现PO_4〜(3-)显着抑制Cr(VI)还原约27%,因为它可以增强Cr的氧化。溶解氧中的Fe(II) Cr(VI)还原的化学计量是在较低的pH(2-3.1)范围内通过实验确定的,在该范围内可以忽略Fe(II)被溶解氧的氧化及其沉淀。在Fe(II)还原Cr(VI)的情况下,相对于〜3的化学计量比,观察到的总摩尔比在2.49至2.92之间变化。 Fe〜0参与电极表面还原Cr(VI)以及电极上沉积物的积累解释了包括逐步变化在内的观察结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号