...
首页> 外文期刊>SIAM Review >Computing Fundamental Matrix Decompositions Accurately via the Matrix Sign Function in Two Iterations: The Power of Zolotarev's Functions
【24h】

Computing Fundamental Matrix Decompositions Accurately via the Matrix Sign Function in Two Iterations: The Power of Zolotarev's Functions

机译:通过矩阵符号函数在两个迭代中准确计算基本矩阵分解:Zolotarev函数的功效

获取原文
获取原文并翻译 | 示例
           

摘要

The symmetric eigenvalue decomposition and the singular value decomposition (SVD) are fundamental matrix decompositions with many applications. Conventional algorithms for computing these decompositions are suboptimal in view of recent trends in computer architectures which require minimizing communication together with arithmetic costs. Spectral divide-and-conquer algorithms, which recursively decouple the problem into two smaller subproblems, can achieve both requirements. Such algorithms can be constructed with the polar decomposition playing two key roles: it forms a bridge between the symmetric eigendecomposition and the SVD, and its connection to the matrix sign function naturally leads to spectral-decoupling. For computing the polar decomposition, the scaled Newton and QDWH iterations are two of the most popular algorithms, as they are backward stable and converge in at most nine and six iterations, respectively. Following this framework, we develop a higher-order variant of the QDWH iteration for the polar decomposition. The key idea of this algorithm comes from approximation theory: we use the best rational approximant for the scalar sign function due to Zolotarev in 1877. The algorithm exploits the extraordinary property enjoyed by the sign function that a high-degree Zolotarev function (best rational approximant) can be obtained by appropriately composing low-degree Zolotarev functions. This lets the algorithm converge in just two iterations in double-precision arithmetic, with the whopping rate of convergence seventeen. The resulting algorithms for the symmetric eigendecompositions and the SVD have higher arithmetic costs than the QDWH-based algorithms, but are better suited for parallel computing and exhibit excellent numerical backward stability.
机译:对称特征值分解和奇异值分解(SVD)是具有许多应用程序的基本矩阵分解。考虑到计算机体系结构的最新趋势,用于计算这些分解的常规算法是次优的,该趋势要求最小化通信以及算术成本。光谱分治法将问题递归解耦为两个较小的子问题,可以满足这两个要求。这样的算法可以构造为具有两个关键作用的极坐标分解:它在对称特征分解和SVD之间形成一座桥梁,并且它与矩阵符号函数的连接自然会导致光谱去耦。为了计算极坐标分解,按比例缩放的牛顿迭代和QDWH迭代是两个最受欢迎的算法,因为它们向后稳定,并且分别收敛于最多9个迭代和6个迭代。根据此框架,我们为极性分解开发了QDWH迭代的高阶变体。该算法的关键思想来自于近似理论:由于1877年的Zolotarev,我们对标量符号函数使用了最佳有理近似值。该算法利用了高Zolotarev函数(最佳有理逼近度)的符号函数所具有的非凡性质。可以通过适当地组合低度Zolotarev函数来获得。这样一来,该算法就可以在双精度算法中仅进行两次迭代收敛,收敛速度高达17。所得的对称特征分解和SVD算法比基于QDWH的算法具有更高的算术成本,但更适合于并行计算并具有出色的数值后向稳定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号