...
首页> 外文期刊>Biomaterials >Microenvironment induced spheroid to sheeting transition of immortalized human keratinocytes (HaCaT) cultured in microbubbles formed in polydimethylsiloxane.
【24h】

Microenvironment induced spheroid to sheeting transition of immortalized human keratinocytes (HaCaT) cultured in microbubbles formed in polydimethylsiloxane.

机译:微环境诱导了在聚二甲基硅氧烷中形成的微泡中培养的永生化人角质形成细胞(HaCaT)的球状向片状转变。

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The in vivo cellular microenvironment is regulated by a complex interplay of soluble factors and signaling molecules secreted by cells and it plays a critical role in the growth and development of normal and diseased tissues. In vitro systems that can recapitulate the microenvironment at the cellular level are needed to investigate the influence of autocrine signaling and extracellular matrix effects on tissue homeostasis, regeneration, disease development and progression. In this study, we report the use of microbubble technology as a means to culture cells in a controlled microenvironment in which cells can influence their function through autocrine signaling. Microbubbles (MB) are small spherical cavities about 100-300 mum in diameter formed in hydrophobic polydimethylsiloxane (PDMS) with approximately 60-100 mum circular openings and aspect ratio approximately 3.0. We demonstrate that the unique architecture of the microbubble compartment is advantaged for cell culture using HaCaT cells, an immortalized keratinocyte cell line. We observe that HaCaT cells, seeded in microbubbles (15-20 cells/MB) and cultured under standard conditions, adopt a compact 3D spheroidal morphology. Within 2-3 days, the cells transition to a sheeting morphology. Through experimentation and simulation we show that this transition in morphology is due to the unique architecture of the microbubble compartment which enables cells to condition their local microenvironment. The small media volume per cell and the development of shallow concentration gradients allow factors secreted by the cells to rise to bioactive levels. The kinetics of the morphology transition depends on the number of cells seeded per microbubble; higher cell seeding induces a more rapid transition. HaCaT cells seeded onto PDMS cured in 96-well plates also form compact spheroids but they do not undergo a transition to a sheeting morphology even after several weeks of culture. The importance of soluble factor accumulation in driving this morphology transition in microbubbles is supported by the observation that spheroids do not form when cells - seeded into microbubbles or onto PDMS cured in 96-well plates - are cultured in media conditioned by HaCaT cells grown in standard tissue culture plate. We observed that the addition of TGF-beta1 to the growth media induced cells to proliferate in a sheeting morphology from the onset both on PDMS cured in 96-well plates and in microbubbles. TGF-beta1 is a morphogen known to regulate epithelial-to-mesenchymal transition (EMT). Studies of the role of Ca(2+) concentration and changes in E-cadherin expression additionally support an EMT-like HaCaT morphology transition. These findings taken together validate the microbubble compartment as a unique cell culture platform that can potentially transform investigative studies in cell biology and in particular the tumor microenvironment. Targeting the tumor microenvironment is an emerging area of anti-cancer therapy.
机译:体内细胞微环境受可溶性因子和细胞分泌的信号分子之间复杂相互作用的调控,并且在正常组织和患病组织的生长和发育中起着至关重要的作用。需要能够在细胞水平上概括微环境的体外系统来研究自分泌信号和细胞外基质效应对组织稳态,再生,疾病发展和进展的影响。在这项研究中,我们报告了使用微泡技术作为在受控的微环境中培养细胞的一种手段,其中细胞可以通过自分泌信号传导影响其功能。微泡(MB)是在疏水性聚二甲基硅氧烷(PDMS)中形成的直径约100-300μm的小球形腔体,具有约60-100μm的圆形开口,纵横比约为3.0。我们证明了微泡区室的独特体系结构是利用HaCaT细胞(永生化的角质形成细胞系)进行细胞培养的优势。我们观察到,HaCaT细胞接种在微泡中(15-20个细胞/ MB),并在标准条件下培养,采用紧凑的3D球形形态。在2-3天之内,细胞转变为片状形态。通过实验和模拟,我们表明这种形态上的转变是由于微泡区室的独特结构所致,它使细胞能够调节其局部微环境。每个细胞较小的培养基体积和较浅的浓度梯度使细胞分泌的因子升高至生物活性水平。形态转变的动力学取决于每个微泡中接种的细胞数量。更高的细胞接种率会导致更快的过渡。接种到96孔板上固化的PDMS上的HaCaT细胞也可形成致密的球体,但即使经过数周的培养,它们也不会转变为片状形态。观察到以下事实支持了可溶性因子积累在驱动微泡中这种形态转变中的重要性:当将细胞接种到微泡中或在96孔板中固化的PDMS上培养时,不会形成球状体组织培养板。我们观察到,向生长培养基中添加TGF-β1可以诱导细胞从在96孔板中固化的PDMS以及微泡中开始的片状形态增殖。 TGF-beta1是一种已知可调节上皮到间充质转化(EMT)的形态发生子。 Ca(2+)浓度和E-钙黏着蛋白表达变化的作用的研究还支持类似EMT的HaCaT形态转变。这些发现共同证明了微泡区室是独特的细胞培养平台,可以潜在地改变细胞生物学特别是肿瘤微环境中的研究性研究。靶向肿瘤微环境是抗癌治疗的新兴领域。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号