首页> 外文期刊>Sensors and Actuators, A. Physical >Experimental and theoretical studies on MEMS piezoelectric vibrational energy harvesters with mass loading
【24h】

Experimental and theoretical studies on MEMS piezoelectric vibrational energy harvesters with mass loading

机译:大载荷下MEMS压电振动能量采集器的实验与理论研究

获取原文
获取原文并翻译 | 示例
       

摘要

Experimental and theoretical investigations on micro-scale multi-morph cantilever piezoelectric vibrational energy harvesters (PZEHs) of the MicroElectroMechanical Systems (MEMS) are presented. The core body of a PZEH is a "multi-morph" cantilever, where one end is clamped to a base and the other end is free. This "fixed-free" cantilever system including a proof-mass (also called the end-mass) on the free-end that can oscillate with the multi-layer cantilever under continuous sinusoidal excitations of the base motion. A partial differential equation (PDE) describing the flexural wave propagating in the multi-morph cantilever is reviewed. The resonance frequencies of the lowest mode of a multi-morph cantilever PZEH for some ratios of the proof-mass to cantilever mass are calculated by either solving the PDE numerically or using a lumped-element model as a damped simple harmonic oscillator; their results are in good agreement (disparity ≤ 0.5%). Experimentally, MEMS PZEHs were constructed using the standard micro-fabrication technique. Calculated fundamental resonance frequencies, output electric voltage amplitude V and output power amplitude P with an optimum load compared favorably with their corresponding measured values; the differences are all less than 4%. Furthermore, a MEMS PZEH prototype was shown resonating at 58.0 ± 2.0 Hz under 0.7 g (g = 9.81 m/s ~2) external excitations, corresponding peak power reaches 63 μW with an output load impedance Z of 85 kΩ. This micro-power generator enabled successfully a wireless sensor node with the integrated sensor, radio frequency (RF) radio, power management electronics, and an advanced thin-film lithium-ion rechargeable battery for power storage at the 2011 Sensors Expo and Conference held in Chicago, IL. In addition, at 58 Hz and 0.5, 1.0 g excitations power levels of 32, and 128 μW were also obtained, and all these three power levels demonstrated to be proportional to the square of the acceleration amplitude as predicted by the theory. The reported P at the fundamental resonance frequency f _1 and acceleration G-level, reached the highest "Figure of Merit" [power density × (bandwidth/resonant frequency)] achieved amongst those reported in the up-to-date literature for high quality factor Q f MEMS PZEH devices.
机译:提出了对微机电系统(MEMS)的微型多形态悬臂压电振动能量采集器(PZEHs)的实验和理论研究。 PZEH的核心主体是“多形”悬臂,其中一端夹在基部上,另一端悬空。这种“无固定”悬臂系统在自由端包括一个质量块(也称为末端质量),在基本运动的连续正弦激励下,该质量块可以与多层悬臂一起振荡。审查了描述多形悬臂中弯曲波传播的偏微分方程(PDE)。对于多质量悬臂梁PZEH的最低模式,对于某些质量质量与悬臂梁质量的比率,其谐振频率是通过数值求解PDE或使用集总模型作为阻尼简单谐波振荡器来计算的;他们的结果吻合良好(差异≤0.5%)。在实验中,MEMS PZEH使用标准的微制造技术构建。计算出的基本谐振频率,具有最佳负载的输出电压幅度V和输出功率幅度P与相应的测量值相比是有利的;差异均小于4%。此外,显示了MEMS PZEH原型在0.7 g(g = 9.81 m / s〜2)外部激励下以58.0±2.0 Hz谐振,相应的峰值功率达到63μW,输出负载阻抗Z为85kΩ。这款微型发电机成功地实现了无线传感器节点的功能,该节点具有集成的传感器,射频(RF)无线电,电源管理电子设备和高级薄膜锂离子可充电电池,用于在2011年举行的传感器博览会和会议上进行蓄电。伊利诺伊州芝加哥。此外,在58 Hz和0.5时,还获得了1.0 g的激励功率水平,分别为32和128μW,这三个功率水平均与理论预测的加速度振幅的平方成正比。报告的P在基本共振频率f _1和加速度G级别上达到了“高品质因数” [功率密度×(带宽/共振频率)],这是最新文献中报道的高质量的Q f MEMS PZEH器件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号