首页> 外文期刊>Sensors and Actuators, A. Physical >Simulated and experimental dynamic response characterization of an electromagnetic microvalve
【24h】

Simulated and experimental dynamic response characterization of an electromagnetic microvalve

机译:电磁微型阀的仿真和实验动态响应表征

获取原文
获取原文并翻译 | 示例
           

摘要

The dynamic response of two electromagnetically actuated microvalves operating in open-air conditions are measured experimentally and simulated using a three-dimensional fluid-structural finite element model. Open-air conditions mean that the fluid inlet and outlet are not pressurized. The dynamic response of the membrane is obtained experimentally by exciting the valve with a step voltage signal of 1 kHz and measuring the membrane vertical displacement using a Polytec Laser Doppler Vibrometer (LDV) system. Vibration analysis of the experimental data provides dynamic parameters such as natural frequency, air damping coefficient, spring constant, and settling time of the membrane. An electromagnetic force model based on the reluctance method is constructed and validated from the experimental data. The validated electromagnetic force model and corrected material properties are then used in a three-dimensional, fluid-structural finite element model to simulate membrane dynamics. Pertinent dynamic parameters such as resonance frequency, spring constant, microvalve closing time, settling time of the membrane, and actuation energy of the microvalve are finally compared with the simulated results. The comparison of experimental and simulation results shows that the finite element model accurately reproduces the dynamics of the membrane in the slip-flow region. A valid simulation method can then be used to simulate microvalve dynamic response in pressurized flow conditions and evaluate new designs. Valve closing time of less than 150 mu s is demonstrated in one valve design. The energy required to close the microvalve is in the range of 300-678 mu J. (c) 2007 Elsevier B.V. All rights reserved.
机译:实验测量了两个在露天条件下电磁驱动的微型阀的动态响应,并使用三维流体结构有限元模型进行了仿真。露天条件意味着流体入口和出口未加压。通过以1 kHz的阶跃电压信号激励阀门并使用Polytec Laser Doppler Vibrometer(LDV)系统测量薄膜的垂直位移,可以通过实验获得薄膜的动态响应。实验数据的振动分析提供了动态参数,例如固有频率,空气阻尼系数,弹簧常数和膜的稳定时间。建立了基于磁阻法的电磁力模型,并通过实验数据进行了验证。然后,将经过验证的电磁力模型和校正后的材料特性用于三维流体结构有限元模型中,以模拟膜动力学。最后将相关的动力学参数,如共振频率,弹簧常数,微阀关闭时间,膜的沉降时间和微阀的致动能量与仿真结果进行了比较。实验和仿真结果的比较表明,有限元模型可以精确地再现滑流区域中膜的动力学。然后可以使用有效的模拟方法来模拟加压流量条件下的微阀动态响应并评估新设计。在一种阀门设计中,阀门关闭时间少于150μs。关闭微型阀所需的能量在300-678兆焦耳范围内。(c)2007 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号