首页> 外文期刊>Scripta materialia >The vickers indentation technique used to evaluate thermal shock resistance of brittle materials
【24h】

The vickers indentation technique used to evaluate thermal shock resistance of brittle materials

机译:维氏压痕技术用于评估脆性材料的抗热震性

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The establishment of transient thermal stresses during quenching brittle materials involves a number of parameters, such as Young's modulus E, Poisson's ratio v, coefficient of thermal expansion a, thermal conductivity of the material k, the size and shape of the sample, the quenching temperature difference AT, and the coefficient of heat transfer in the quenching medium h. the damage resulting from a critical thermal shock is governed by the toughness, the statistical distribution of initial surface flaws and thus by the rupture stress [1,2,3,4,5]. The evaluation of the thermal shock behaviour of brittle materials passes thus through a thorough investigation of all these parameters and properties, and a lot of thermal shock resistance parameters have been proposed [6]. The controlled flaw technique [7] made use of indentation crack systems from which the residual stresses had been removed in order to determine more accurately the maximum value of the thermal transient stress [8][9]. However, as formerly [10], only couples of critical values of quenching temperature difference and thermal stress could be scarcely determined. More recent work made use of the preliminary stage of stable extension of the radial cracks, as it is allowed if the residual contact stress remain [11,12,13]. A qualitative assessment of thermal shock resistances or severities ofquenching became thus possible [14,15].It is shown here that, additionally to the preliminary determination of the material's toughness and the quantification of the maximum value of the thermal transient stress [16], the combination of toughness and these thermal stresses yields descriptions of a new thermal shock resistance parameter for temperature differences AT lower than the critical one ATC. The derivations will be verified on various microstructures of high-temperature superconducting ceramics, "YBaCuO", and on alumina.
机译:淬火脆性材料过程中瞬态热应力的建立涉及许多参数,例如杨氏模量E,泊松比v,热膨胀系数a,材料的导热系数k,样品的尺寸和形状,淬火温度差ΔT和淬火介质中的传热系数h。严重的热冲击造成的破坏取决于韧性,初始表面缺陷的统计分布,并因此取决于断裂应力[1,2,3,4,5]。因此,对脆性材料的热冲击行为的评估是通过对所有这些参数和特性的全面研究而完成的,并且提出了许多抗热冲击的参数[6]。受控缺陷技术[7]利用压痕裂纹系统去除了残余应力,以便更准确地确定热瞬态应力的最大值[8] [9]。但是,如以前[10]所示,几乎无法确定淬火温度差和热应力的几个临界值。最近的工作利用了径向裂纹稳定扩展的初期阶段,因为如果残余接触应力保持不变,这是允许的[11,12,13]。因此,可以对耐热冲击性或淬火强度进行定性评估[14,15]。在此表明,除了初步确定材料的韧性和量化热瞬态应力的最大值外,[16]韧性和这些热应力的结合产生了一个新的抗热冲击参数的描述,该参数的温度差AT低于关键的ATC。将在高温超导陶瓷的各种微观结构“ YBaCuO”和氧化铝上验证该推导。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号