...
首页> 外文期刊>Cardiovascular engineering and technology >Relative Effects of Fluid Oscillations and Nutrient Transport in the In Vitro Growth of Valvular Tissues
【24h】

Relative Effects of Fluid Oscillations and Nutrient Transport in the In Vitro Growth of Valvular Tissues

机译:瓣膜组织体外生长中流体振荡和营养运输的相对影响

获取原文
获取原文并翻译 | 示例

摘要

Engineered valvular tissues are cultured dynamically, and involve specimen movement. We previously demonstrated that oscillatory shear stresses (OSS) under combined steady flow and specimen cyclic flexure (flex-flow) promote tissue formation. However, localized efficiency of specimen mass transport is also important in the context of cell viability within the growing tissues. Here, we investigated the delivery of two essential species for cell survival, glucose and oxygen, to 3-dimensional (3D) engineered valvular tissues. We applied a convective-diffusive model to characterize glucose and oxygen mass transport with and without valve-like specimen flexural movement. We found the mass transport effects for glucose and oxygen to be negligible for scaffold porosities typically present during in vitro experiments and non-essential unless the porosity was unusually low (<40%). For more typical scaffold porosities (75%) however, we found negligible variation in the specimen mass fraction of glucose and oxygen in both non-moving and moving constructs (p > 0.05). Based on this result, we conducted an experiment using bone marrow stem cell (BMSC)-seeded scaffolds under Pulsatile flow-alone states to permit OSS without any specimen movement. BMSC-seeded specimen collagen from the pulsatile flow and flex-flow environments were subsequently found to be comparable (p > 0.05) and exhibited some gene expression similarities. We conclude that a critical magnitude of fluid-induced, OSS created by either pulsatile flow or flex-flow conditions, particularly when the oscillations are physiologically-relevant, is the direct, principal stimulus that promotes engineered valvular tissues and its phenotype, whereas mass transport benefits derived from specimen movement are minimal.
机译:工程化的瓣膜组织可以动态培养,并涉及标本运动。我们先前证明,在稳定流和样品循环弯曲(弯曲流)共同作用下的振荡剪切应力(OSS)促进组织形成。但是,在不断增长的组织内的细胞生存能力的背景下,标本质量运输的局部效率也很重要。在这里,我们研究了细胞存活的两个基本物种葡萄糖和氧气向3维(3D)工程化的瓣膜组织的传递。我们应用对流扩散模型来表征有和没有瓣膜样弯曲运动的葡萄糖和氧气的质量传递。我们发现,对于葡萄糖和氧气的质量传输影响,对于体外实验中通常存在的支架孔隙率可以忽略不计,除非孔隙率异常低(<40%),否则其不是必需的。然而,对于更典型的支架孔隙率(75%),我们发现在不移动和移动的构造中,葡萄糖和氧气的样品质量分数变化均可以忽略不计(p> 0.05)。基于此结果,我们进行了一项实验,使用仅在脉冲流动状态下接种骨髓干细胞(BMSC)的支架,以使OSS无需任何标本移动。随后发现,来自脉搏流动和弯曲流动环境的BMSC种子标本胶原蛋白具有可比性(p> 0.05),并表现出一些基因表达相似性。我们得出的结论是,由脉动流或挠曲流条件(尤其是在与生理相关的振荡时)产生的流体诱导的OSS的临界量,是促进工程化的瓣膜组织及其表型的直接主要刺激,而大量运输标本移动带来的好处极少。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号