...
首页> 外文期刊>SAE international journal of transportation safety >Robust Design in Occupant Safety Simulation
【24h】

Robust Design in Occupant Safety Simulation

机译:乘员安全仿真中的稳健设计

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Explicit FE-simulation has become a standard design tool in passive safety development as it can help to reduce the number of vehicle prototype tests, especially in the early project stages. Due to fewer hardware tests available as sources of validation, the expectations towards predictability of dummy injury occurrence have strongly increased. To produce robust results, virtual passive safety analysis has to take real uncertainties of test condition and their probabilistic effects upon the system's response into account. Findings by simulation therefore should not be regarded anymore as single point statements in a pure deterministic approach. They rather need to be extended into statements upon grades of correlation between individual system parameters taking into account their stochastic nature. This paper illustrates a process for complete robustness analysis in occupant safety simulation. It introduces techniques to document statistical confidence intervals of the correlations determined, and uses statistical "bootstrapping" in populations where only a limited number of samplings can be generated. Finally, by regression analysis within the reduced relevant physical parameter space, a risk assessment upon a potential failure within the specific test requirements is carried out. Identification of initial design space parameters requires experience and proper preparation when one is conducting statistical analysis on occupant safety. This work explains relevant design space parameters for a typical full vehicle test and classifies them in proper ways since obtaining their sampling often requires additional pre-simulation efforts. In this context a number of in-house tools are highlighted here that helps the designer in obtaining work intensive design parameters such as the distribution of dummy, seat & belt positions. The entire robustness design process uses automated work flows and tools to visualize the statistical data observed since the simulation model complexity and its computational costs are extremely high. Finally, the gained correlations are discussed, interpreted and explained in terms of real life phenomenon that can be observed in testing.
机译:显式有限元仿真已成为被动安全开发中的标准设计工具,因为它可以帮助减少车辆原型测试的次数,尤其是在项目早期。由于可作为验证来源的硬件测试较少,因此对假人伤害发生的可预测性的期望大大提高了。为了产生可靠的结果,虚拟被动安全分析必须考虑测试条件的真实不确定性及其对系统响应的概率影响。因此,在纯确定性方法中,不应再将通过模拟得出的结论视为单点陈述。宁愿将它们扩展为考虑各个系统参数之间随机性的相关等级的语句。本文说明了在乘员安全模拟中进行完整鲁棒性分析的过程。它引入了一些技术来记录确定的相关性的统计置信区间,并在只能生成有限数量采样的总体中使用统计“自举”。最后,通过在减少的相关物理参数空间内进行回归分析,对特定测试要求内的潜在故障进行了风险评估。在对乘员安全进行统计分析时,识别初始设计空间参数需要经验和适当的准备。这项工作解释了典型的整车测试的相关设计空间参数,并以适当的方式对它们进行分类,因为获取其采样通常需要额外的预仿真工作。在这种情况下,这里重点介绍了许多内部工具,这些工具可以帮助设计人员获得工作量大的设计参数,例如假人,座椅和安全带位置的分布。整个稳健性设计过程使用自动化的工作流程和工具来可视化观察到的统计数据,因为仿真模型的复杂性及其计算成本非常高。最后,根据在测试中可以观察到的真实现象对获得的相关性进行讨论,解释和解释。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号