首页> 外文期刊>Ore Geology Reviews: Journal for Comprehensive Studies of Ore Genesis and Ore Exploration >In-situ LA-ICP-MS trace elemental analyses of magnetite: The Mesozoic Tengtie skarn Fe deposit in the Nanling Range, South China
【24h】

In-situ LA-ICP-MS trace elemental analyses of magnetite: The Mesozoic Tengtie skarn Fe deposit in the Nanling Range, South China

机译:磁铁矿的原位LA-ICP-MS痕量元素分析:中国南岭山脉中生代腾铁矽卡岩型铁矿床

获取原文
获取原文并翻译 | 示例
           

摘要

The Nanling Range in South China hosts numerous world-class W-Sn deposits and some Fe deposits. The Mesozoic Tengtie Fe skarn deposit in the southern Nanling Range is contemporaneous with the regional Sn mineralization. The deposit is composed of numerous ore bodies along the contacts between the late Paleozoic or Mesozoic carbonate rocks and the Yanshanian Lianyang granitic complex. Interaction of the magma with hosting dolomitic limestone and limestone formed calcic (Ca-rich) and magnesian (Mg-rich) skarns, respectively. The Tengtie deposit has a paragenetic sequence of the prograde stage of anhydrous skarn minerals, followed by the retrograde stage of hydrous skarn minerals, and the final sulfide stage. Magnetite in the prograde and retrograde skarn stages is associated with diopside, garnet, chlorite, epidote, and phlogopite, whereas magnetite of the final stage is associated with chalcopyrite and pyrite. Massive magnetite ores crosscut by quartz and calcite veins are present mainly in the retrograde skarn stage. Laser ablation ICP-MS was used to determine trace elements of magnetite from different stages. Some magnetite grains have unusually high Ca, Na, K, and Si, possibly due to the presence of silicate mineral inclusions. Magnetite of the prograde stage has the highest Co contents, but that of the sulfide stage is extremely poor in Co which partitions in sulfides. Magnetite of magnesian skarns contains more Mg, Mn, and Al than that of calcic skarns, attributed to the interaction of the magma with compositionally different host rocks. Magnetite from calcic and magnesian skarns contains 6-185 ppm Sn and 61-1246 ppm Sn, respectively. The high Sn contents are not due to the presence of cassiterite inclusions which are not identified in magnetite. Instead, we believe that Sn resides in the magnetite structure. Regionally, intensive Mesozoic Sn mineralization in South China indicates that concurrent magmatic-hydrothermal fluids may be rich in Sn and contribute to the formation of high-Sn magnetite. Our study demonstrates that trace elements of magnetite can be a sensitive indicator for the skarn stages and wall-rock compositions, and as such, trace elemental chemistry of magnetite can be a potentially powerful fingerprint for sediment provenance and regional mineralization. (C) 2014 Elsevier B.V. All rights reserved.
机译:中国南方的南岭山脉蕴藏着众多世界一流的钨锡矿床和一些铁矿床。南岭山脉南部的中生代腾铁铁矽卡岩矿床与区域锡矿化同时期。该矿床沿晚古生代或中生界碳酸盐岩与燕山期廉阳花岗质复合体之间的接触,由众多矿体组成。岩浆与白云质灰岩和石灰岩的相互作用分别形成钙质(富含钙)和镁质(富含镁)矽卡岩。腾铁矿床具有无水矽卡岩矿物前移阶段,随后的含水矽卡岩矿物逆行阶段和最终硫化物阶段的共生序列。矽卡岩的前期和逆行阶段的磁铁矿与透辉石,石榴石,绿泥石,附子和金云母有关,而最后阶段的磁铁矿与黄铜矿和黄铁矿有关。石英和方解石脉横切的块状磁铁矿主要存在于逆矽卡岩阶段。激光烧蚀ICP-MS用于确定不同阶段磁铁矿的痕量元素。一些磁铁矿晶粒具有异常高的Ca,Na,K和Si,这可能是由于存在硅酸盐矿物包裹体所致。前进阶段的磁铁矿具有最高的Co含量,但是硫化物阶段的磁铁矿中的Co极少,而Co则以硫化物的形式分配。镁质矽卡岩的磁铁矿比钙质矽卡岩的镁,锰和铝含量更高,这归因于岩浆与成分不同的主岩相互作用。来自钙质和镁质矽卡岩的磁铁矿分别含有6-185 ppm的Sn和61-1246 ppm的Sn。高锡含量不是由于磁铁矿中未发现锡石夹杂物。相反,我们认为Sn存在于磁铁矿结构中。从区域上看,华南地区中生代强烈的锡矿化表明,同时存在的岩浆热液中可能富含锡,并有助于形成高锡磁铁矿。我们的研究表明,磁铁矿的痕量元素可能是矽卡岩阶段和围岩成分的敏感指示剂,因此,磁铁矿的痕量元素化学性质可能是沉积物来源和区域矿化的潜在指纹。 (C)2014 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号