...
首页> 外文期刊>Optics and Spectroscopy >Entangled States and Nanoobjects in Quantum Optics
【24h】

Entangled States and Nanoobjects in Quantum Optics

机译:量子光学中的纠缠态和纳米物体

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Progress in optical investigations, the influence optics exerts on nearly every aspect of everyday life, and the dependence of many applications on achievements in optical science clearly confirm the statement that optics has become an integrated area of knowledge, technology, and industry. In recent years, a significant place in the development of optics is occupied by quantum optics. The development of quantum optics, as any other science, proceeds irregularly: commonly, popular lines of inquiry move to the forefront, drawing the attention of researchers y their novelty and recognized possibilities for practical applications. Entangled states, being crucial for the creation of quantum computers, display one such possibility, previously inaccessible for traditional electronic computers. The problem of creation of such states and controlled action on them rests on the solution of a number of complex tasks, including the search for materials with a large coherence time, which allow for local actions and isolation with a spatial resolution of the order of the wavelength of light or better. The physical methods of realization of quantum computers thus far proposed-linear ion traps and solid-state variants on the basis of spin states of nuclei in diamond and silicon-employ a combination of techniques of nuclear magnetic resonance and spectroscopy of single molecules. The quest to create quantum computers coincided surprisingly with the steady demand of the commercial market for ever more powerful processors. According to Moore's empirical law, the number of transistors in chips grows exponentially, which leads to the necessity of decreasing transistors to atomic size. This should result either in the saturation of the growth rate or in the development of a fundamentally new technology, whose role would be played by quantum processors.
机译:光学研究的进步,光学对日常生活几乎各个方面的影响,以及许多应用对光学科学成就的依赖,清楚地证明了光学已成为知识,技术和工业的综合领域的说法。近年来,量子光学占据了光学发展的重要位置。像其他任何科学一样,量子光学的发展是不规则的:通常,流行的研究领域走到了最前沿,吸引了研究人员的新颖性和公认的实际应用可能性。纠缠的状态对于创建量子计算机至关重要,它显示了一种这样的可能性,这是传统电子计算机以前无法获得的。建立这样的状态并对其采取控制行动的问题在于解决许多复杂的任务,包括寻找具有较长相干时间的材料,这些材料允许进行局部行动并以空间分辨率的数量级进行隔离。光的波长或更好。迄今为止,实现量子计算机的物理方法提出了基于金刚石和硅中核自旋态的线性离子阱和固态变体,并结合了核磁共振技术和单分子光谱技术。创造量子计算机的追求与商业市场对功能越来越强大的处理器的稳定需求相吻合。根据摩尔定律,芯片中晶体管的数量呈指数增长,这导致有必要将晶体管减小到原子尺寸。这应该导致增长率的饱和或根本性新技术的发展,而量子技术将发挥其作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号