...
首页> 外文期刊>Optics and Spectroscopy >Columinescence of Dye Molecules in Nanostructures of Metal Ion Complexes
【24h】

Columinescence of Dye Molecules in Nanostructures of Metal Ion Complexes

机译:金属离子配合物纳米结构中染料分子的共发光

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The mechanism of columinescence (fluorescence sensitization) of dyes incorporated in nanostructures of metal complexes is studied. It is shown for the first time that the columinescence of dyes is due to the transfer of excitation energy from ligands and metal ions of complexes that form nanostructures. It is proven that the dye columinescence of rhodamine 6G (R6G) molecules incorporated into nanostructures of Al(DBM)_(3)phen, Al(DBM)_(n)(OH)_(6-2n), and Eu(DBM)_(3)phen (DBM is dibenzoylmethane) nanostructures is completely determined by the singlet excitation energy migration from ligands to R6G molecules. It is shown that, at small concentrations of R6G, the R6G columinescence intensity is lower in nanostructures of metal complexes with a high probability of S-T conversion and that this difference disappears at large concentrations of R6G. In the case of Nile blue (whose S_(1) level lies below the ~(5)D_(0) level of Eu(III)) incorporated in nanostructures of Eu(DBM)_(3)phen complexes, as well as in nanostructures of Al(DBM)_(3)phen and Gd(DBM)_(3)phen complexes with admixture of Eu complexes, we observed the S-S energy transfer from DBM to NB in addition to the delayed sensitized fluorescence of NB previously observed in nanostructures of Eu complexes, which was caused by the energy transfer from the ~(5)D_(0) level of Eu(III) to NB. At dye concentrations below 100 nM, the efficiency of NB sensitization due to the migration of singlet excitation energy from DBM is lower than in the case of the energy transfer from Eu(III) ions, while, at large concentrations of the dye, the S-S energy transfer successfully competes with the sensitization of NB by Eu(III) ions. The use of dye columinescence makes it possible to easily determine dye concentrations of 2-100 nM in solutions with standard spectrofluorimeters.
机译:研究了掺入金属配合物纳米结构中的染料的共发光(荧光增感)机理。首次表明,染料的共发光是由于激发能从形成纳米结构的配合物的配体和金属离子转移而引起的。事实证明,掺入Al(DBM)_(3)phen,Al(DBM)_(n)(OH)_(6-2n)和Eu(DBM)纳米结构的罗丹明6G(R6G)分子的染料共发光)_(3)phen(DBM是二苯甲酰甲烷)纳米结构完全由从配体到R6G分子的单重激发能迁移决定。结果表明,在低浓度的R6G下,具有高S-T转化率的金属配合物纳米结构中的R6G发光强度较低,并且在高浓度的R6G下这种差异消失了。对于掺入Eu(DBM)_(3)phen配合物纳米结构的尼罗蓝(S_(1)水平低于Eu(III)的〜(5)D_(0)水平) Al(DBM)_(3)phen和Gd(DBM)_(3)phen配合物与Eu配合物的纳米结构,我们观察到SS能量从DBM转移到NB以及先前在NB中观察到的NB延迟敏化荧光。 Eu配合物的纳米结构,这是由于从Eu(III)的〜(5)D_(0)能级到NB的能量转移引起的。在染料浓度低于100 nM时,由于DBM的单线态激发能的迁移,导致NB敏化的效率低于从Eu(III)离子进行能量转移的情况,而在染料的浓度较大时,SS能量转移成功地与Eu(III)离子致敏的NB竞争。染料共发光的使用使得可以使用标准分光荧光计轻松确定溶液中2-100 nM的染料浓度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号