首页> 外文期刊>Optics & Laser Technology >Identifying the mechanisms of pulse formation and evolution in actively mode-locked Erbium fiber lasers with meters and kilometers-long
【24h】

Identifying the mechanisms of pulse formation and evolution in actively mode-locked Erbium fiber lasers with meters and kilometers-long

机译:识别几米和几千米长的主动锁模Er光纤激光器中脉冲形成和演化的机理

获取原文
获取原文并翻译 | 示例
           

摘要

We investigated the dynamics of pulse evolution in Erbium-doped fiber ring lasers with cavity lengths varying from 16.4 m to 100.8 km actively mode-locked at repetition rate of 1 GHz. The novelty of this work is to explore the limits of Kuizenga-Siegman theory in ultralong fiber laser and to demonstrate the dynamics of pulse generation and propagation separately. When we vary the length of the Erbium-doped fiber lasers from meters to kilometers long, three operation regimes were identified: mode-locking regime (for cavity lengths with 16.4 m to 1 km), nonlinearity-dominant regime (1 to 10 km) and dispersion and nonlinearity regime that locked the ratio between soliton period and cavity length: Z(S)/L-cav = 1.35 for cavities with 10 to 100 km in a soliton intracavity condition. The variation of pulse widths and the peak powers are analyzed to define the propagation regimes inside the cavities, depending on the cavity length (L-cav), dispersion length (L-D) and nonlinear length (L-NL). When L-cav is shorter than L-D and L-NL, there is neither dispersive nor nonlinear effect during pulse evolution (pulse has duration of approximately 30 ps). In this regime, its final duration is determined by the standard theory of active mode-locking. For L-cav shorter than L-D but similar to L-NL, the pulse evolution is in nonlinearity-dominant regime where soliton propagation provides a sech(2) profile with a TBP transform limited of 0.315. In addition, for cavities longer than 10 km, L-cav similar to L-D and longer (or much longer) than L-NL, the pulse evolution is in the dispersion and nonlinearity dominant regime with its duration depending on the accumulated dispersion. In this regime the soliton effect takes place and the final pulse duration is defined by the cavity length which is approximately the soliton period. (C) 2015 Elsevier Ltd. All rights reserved.
机译:我们研究了在腔长从16.4 m到100.8 km的有源锁模中以1 GHz的重复频率进行锁相的掺Er光纤环形激光器中脉冲演化的动力学。这项工作的新颖之处在于探索Kuizenga-Siegman理论在超长光纤激光器中的局限性,并论证脉冲产生和传播的动力学。当我们将掺b光纤激光器的长度从几米长改为几千米长时,可以确定三种工作方式:锁模方式(对于腔长为16.4 m至1 km),非线性为主的方式(1至10 km)色散和非线性机制锁定了孤子腔内条件下10至100 km腔的孤子周期与腔长之比:Z(S)/ L-cav = 1.35。分析脉冲宽度和峰值功率的变化,以根据空腔长度(L-cav),色散长度(L-D)和非线性长度(L-NL)来定义空腔内部的传播方式。当L-cav短于L-D和L-NL时,在脉冲演化过程中既没有色散也没有非线性效应(脉冲的持续时间约为30 ps)。在这种情况下,其最终持续时间由主动锁模的标准理论确定。对于比L-D短但与L-NL类似的L-cav,脉冲演化处于非线性占主导地位的状态,其中孤子传播提供了sech(2)轮廓,TBP变换限制为0.315。此外,对于长于10 km的腔,L-cav与L-D相似且比L-NL更长(或更长)的腔,脉冲的演化处于色散和非线性主导状态,其持续时间取决于累积色散。在这种情况下,孤子效应发生,并且最终脉冲持续时间由腔长定义,该腔长大约是孤子周期。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号