...
首页> 外文期刊>Cellulose >Prediction of the structures of the plant-specific regions of vascular plant cellulose synthases and correlated functional analysis
【24h】

Prediction of the structures of the plant-specific regions of vascular plant cellulose synthases and correlated functional analysis

机译:维管植物纤维素合成酶植物特定区域的结构预测和相关功能分析

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Seed plants express cellulose synthase (CESA) protein isoforms with non-redundant functions, but how the isoforms function differently is unknown. Compared to bacterial cellulose synthases, CESAs have two insertions in the large cytosolic loop: the relatively well-conserved Plant Conserved Region (P-CR) and a Class Specific Region (CSR) that varies between CESAs. Absent any atomic structure of a plant CESA, we used ab initio protein structure prediction and molecular modeling to explore how these plant-specific regions may modulate CESA function. We modeled P-CR and CSR peptides from Arabidopsis thaliana CESAs representing the six clades of seed plant CESAs. As expected, the predicted wild type P-CR structures were similar. Modeling of the mutant P-CR of Atcesa8 (R362K) (fra6) suggested that changes in local structural stability and surface electrostatics may cause the mutant phenotype. Among CSRs within CESAs required for primary wall cellulose synthesis, the amino sequence and the modeled arrangement of helices was most similar in AtCESA1 and AtCESA3. Genetic complementation of known Arabidopsis mutants showed that the CSRs of AtCESA1 and AtCESA3 can function interchangeably in vivo. Analysis of protein surface electrostatics led to ideas about how the surface charges on CSRs may mediate protein-protein interactions. Refined modeling of the P-CR and CSR regions of GhCESA1 from cotton modified their tertiary structures, spatial relationships to the catalytic domain, and preliminary predictions about CESA oligomer formation. Cumulatively, the results provide structural clues about the function of plant-specific regions of CESA.
机译:种子植物表达具有非冗余功能的纤维素合酶(CESA)蛋白同工型,但是同工型如何发挥不同的作用尚不清楚。与细菌纤维素合酶相比,CESA在大的胞质环中有两个插入:相对保守的植物保守区(P-CR)和在CESA之间变化的特定类区域(CSR)。由于没有植物CESA的任何原子结构,我们使用了从头算蛋白质结构预测和分子建模的方法来探索这些植物特异性区域如何调节CESA的功能。我们模拟了拟南芥CESA的P-CR和CSR肽,它们代表了种子植物CESA的六个进化枝。如所预期的,预测的野生型P-CR结构是相似的。 Atcesa8(R362K)(fra6)的突变体P-CR的建模表明,局部结构稳定性和表面静电的变化可能会导致突变体表型。在主要壁纤维素合成所需的CESA内的CSR中,在AtCESA1和AtCESA3中,氨基序列和螺旋的建模排列最为相似。已知拟南芥突变体的遗传互补显示,AtCESA1和AtCESA3的CSR在体内可以互换运行。蛋白质表面静电的分析导致人们对CSR表面电荷如何介导蛋白质-蛋白质相互作用的想法。棉花GhCESA1的P-CR和CSR区域的精细建模修改了它们的三级结构,与催化结构域的空间关系以及关于CESA低聚物形成的初步预测。累积地,结果提供了关于CESA植物特定区域功能的结构线索。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号