...
首页> 外文期刊>Oecologia >Modeled responses of terrestrial ecosystems to elevated atmospheric CO2: a comparison of simulations by the biogeochemistry models of the Vegetation/Ecosystem Modeling and Analysis Project (VEMAP).
【24h】

Modeled responses of terrestrial ecosystems to elevated atmospheric CO2: a comparison of simulations by the biogeochemistry models of the Vegetation/Ecosystem Modeling and Analysis Project (VEMAP).

机译:陆地生态系统对升高的大气CO2的响应模型:通过植被/生态系统建模和分析项目(VEMAP)的生物地球化学模型进行的模拟比较。

获取原文
获取原文并翻译 | 示例
           

摘要

This study analysed the responses of net primary production (NPP) to doubled CO2 from 355 to 710 ppmv among three biogeochemistry models in the Vegetation/Ecosystem Modeling and Analysis Project (VEMAP): BIOME-BGC (BioGeochemical Cycles), Century, and the Terrestrial Ecosystem Model (TEM). For the conterminous United States, doubled atmospheric CO2 causes NPP to increase by 5% in Century, 8% in TEM, and 11% in BIOME-BGC. Multiple regression analyses between the NPP response to doubled CO2 and the mean annual temperature and annual precipitation of biomes or grid cells indicated that there are negative relationships between precipitation and the response of NNP to doubled CO2 for all three models. In contrast, there are different relationships between temperature and the response of NPP to doubled CO2 for the three models: there is a negative relationship in the responses of BIOME-BGC, no relationship in the responses of Century, and a positive relationship in the responses of TEM. In BIOME-BGC, the NPP response to doubled CO2 is controlled by the change in transpiration associated with reduced leaf conductance to water vapour. This change affects soil water, then leaf area development and, finally, NPP. In Century, the response of NPP to doubledCO2 is controlled by changes in decomposition rates associated with increased soil moisture that results from reduced evapotranspiration. This change affects nitrogen availability for plants, which influences NPP. In TEM, the NPP response to doubled CO2is controlled by increased carboxylation which is modified by canopy conductance and the degree to which nitrogen constraints cause down-regulation of photosynthesis. The implications of these different mechanisms has consequences for the spatial pattern of NPP responses, and represents, in part, conceptual uncertainty about controls over NPP responses. Progress in reducing these uncertainties requires research focused at the ecosystem level to understand how interactions between the carbon, nitrogen,and water cycles influence the response of NPP to elevated atmospheric CO2.
机译:这项研究分析了植被/生态系统建模和分析项目(VEMAP)中的以下三种生物地球化学模型中的净初级生产(NPP)对二氧化碳浓度从355 ppmv增加到710 ppmv的响应:BIOME-BGC(生物地球化学循环),Century和陆地生态系统模型(TEM)。在美国本土,大气CO2的增加会使世纪中的NPP增加5%,TEM中增加8%,BIOME-BGC中增加11%。 NPP对CO2倍增的响应与生物群落或网格单元的年平均温度和年降水量之间的多元回归分析表明,对于这三个模型,降水与NNP对CO2倍增的响应之间存在负相关关系。相比之下,在三种模型中,温度与NPP对CO2倍增的响应之间存在不同的关系:BIOME-BGC的响应中存在负相关,Century的响应中没有相关,而响应中的正相关TEM。在BIOME-BGC中,NPP对CO2倍增的响应受蒸腾变化的控制,该变化与叶片对水蒸气的电导率降低有关。这种变化会影响土壤水分,进而影响叶面积的发展,最后影响NPP。在世纪,NPP对CO2倍增的响应是由与蒸散量减少引起的土壤水分增加相关的分解速率变化控制的。这种变化会影响植物的氮素利用率,从而影响NPP。在TEM中,NPP对CO2倍增的响应由增加的羧化作用控制,羧基化作用由冠层电导和氮限制导致光合作用下调的程度所改变。这些不同机制的含义对NPP响应的空间格局有影响,并在某种程度上代表了对NPP响应控制的概念不确定性。要减少这些不确定性,就需要在生态系统层面进行研究,以了解碳,氮和水循环之间的相互作用如何影响NPP对升高的大气CO2的响应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号