首页> 外文期刊>Oecologia >Microbial responses to nitrogen addition in three contrasting grassland ecosystems
【24h】

Microbial responses to nitrogen addition in three contrasting grassland ecosystems

机译:三种草地生态系统中微生物对氮添加的响应

获取原文
获取原文并翻译 | 示例
           

摘要

The effects of global N enrichment on soil processes in grassland ecosystems have received relatively little study. We assessed microbial community response to experimental increases in N availability by measuring extracellular enzyme activity (EEA) in soils from three grasslands with contrasting edaphic and climatic characteristics: a semiarid grassland at the Sevilleta National Wildlife Refuge, New Mexico, USA (SEV), and mesic grasslands at Konza Prairie, Kansas, USA (KNZ) and Ukulinga Research Farm, KwaZulu-Natal, South Africa (SAF). We hypothesized that, with N enrichment, soil microbial communities would increase C and P acquisition activity, decrease N acquisition activity, and reduce oxidative enzyme production (leading to recalcitrant soil organic matter [SOM] accumulation), and that the magnitude of response would decrease with soil age (due to higher stabilization of enzyme pools and P limitation of response). Cellulolytic activities followed the pattern predicted, increasing 35-52% in the youngest soil (SEV), 10-14% in the intermediate soil (KNZ) and remaining constant in the oldest soil (SAF). The magnitude of phosphatase response did not vary among sites. N acquisition activity response was driven by the enzyme closest to its pH optimum in each soil: i.e., leucine aminopeptidase in alkaline soil, beta-N-acetylglucosaminidase in acidic soil. Oxidative enzyme activity varied widely across ecosystems, but did not decrease with N amendment at any site. Likewise, SOM and %C pools did not respond to N enrichment. Between-site variation in both soil properties and EEA exceeded any treatment response, and a large portion of EEA variability (leucine aminopeptidase and oxidative enzymes), 68% as shown by principal components analysis, was strongly related to soil pH (r = 0.91, P < 0.001). In these grassland ecosystems, soil microbial responses appear constrained by a molecular-scale (pH) edaphic factor, making potential breakdown rates of SOM resistant to N enrichment.
机译:全球氮素富集对草地生态系统土壤过程的影响研究相对较少。我们通过测量三种具有不同生态和气候特征的草原土壤中的细胞外酶活性(EEA),评估了微生物群落对氮素利用率增加的反应:美国新墨西哥州塞维利亚国家野生动物保护区的半干旱草原(SEV),以及美国堪萨斯州Konza Prairie(KNZ)和南非夸祖鲁-纳塔尔省(SAF)的Ukulinga研究农场的中型草原。我们假设,随着氮的富集,土壤微生物群落将增加C和P的吸收活性,降低N的吸收活性,并减少氧化酶的产生(导致顽固的土壤有机质[SOM]积累),并且响应的幅度将降低随土壤年龄而变化(由于酶库的稳定性更高且磷的响应受到限制)。纤维素分解活性遵循预测的模式,最年轻的土壤(SEV)增加35-52%,中间的土壤(KNZ)增加10-14%,最老的土壤(SAF)保持恒定。磷酸酶反应的幅度之间没有变化。在每种土壤中,最接近其最适pH值的酶驱动N采集活性响应:即碱性土壤中的亮氨酸氨基肽酶,酸性土壤中的β-N-乙酰氨基葡糖苷酶。氧化酶的活性在整个生态系统中变化很大,但在任何位点都不会随着氮的增加而降低。同样,SOM和%C池对N富集也没有响应。土壤性质和EEA的站点间变化超过了任何处理响应,主成分分析表明,很大一部分EEA变化(亮氨酸氨基肽酶和氧化酶)与土壤pH密切相关(r = 0.91, P <0.001)。在这些草地生态系统中,土壤微生物反应似乎受到分子尺度(pH)的水生因子的约束,从而使SOM的潜在分解速率对氮的吸收具有抵抗力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号