...
首页> 外文期刊>Obstetrical and gynecological survey >Error-Prone Chromosome-Mediated Spindle Assembly Favors Chromosome Segregation Defects in Human Oocytes
【24h】

Error-Prone Chromosome-Mediated Spindle Assembly Favors Chromosome Segregation Defects in Human Oocytes

机译:错误杆染色体介导的纺锤体装配有利于人类卵母细胞的染色体分离缺陷。

获取原文
获取原文并翻译 | 示例
           

摘要

Chromosome segregation errors occurring during the meiotic divisions of a human oocyte are the leading cause of pregnancy loss and several genetic disorders. When chromosomes fail to split into perfect halves during meiosis, the embryo cannot survive or will have a genetic defect, such as Down syndrome. Despite the importance of meiosis in human eggs for fertility and human development, the basis for error-prone chromosome segregation is not known. The authors developed an experimental system for ex vivo high-resolution fluorescence microscopy that allowed them to examine human oocytes freshly harvested from women undergoing gonadotropin-stimulated, in vitro fertilization cycles. Through examination of meiosis in more than 100 live human oocytes, an error-prone, chromosome-mediated, spindle assembly mechanism was identified as a major contributor to chromosome segregation defects. Human oocyte spindle assembly was mediated primarily by chromosomes and the small guanosine triphosphatase Ran independent of centrosomes or other microtubule organizing centers in a process requiring about 16 hours. This unusually slow process is in sharp contrast to mitotic spindles and meiotic spindles in mouse oocytes and other species, which rarely become unstable upon establishment of a bipolar spindle, thus rendering meiosis more efficient and less prone to segregation errors. Spindles assembled during meiosis in human oocytes display a high proportion of abnormal kinetochore-microtubule attachments and are intrinsically unstable. Progression into anaphase with abnormal attachments put human oocytes at risk of chromosome segregation errors, providing 1 mechanism for the high rates of aneuploidy.
机译:人类卵母细胞减数分裂过程中发生的染色体分离错误是导致妊娠流失和几种遗传疾病的主要原因。当染色体在减数分裂过程中不能分裂成完美的两半时,胚胎将无法生存或将出现遗传缺陷,例如唐氏综合症。尽管减数分裂对人类卵子的繁殖和人类发育很重要,但容易出错的染色体分离的基础尚不清楚。作者开发了一种用于离体高分辨率荧光显微镜的实验系统,该系统使他们能够检查从接受促性腺激素刺激的体外受精周期的妇女新鲜收获的人卵母细胞。通过检查100多个活的人类卵母细胞的减数分裂,发现容易出错,染色体介导的纺锤体组装机制是导致染色体分离缺陷的主要因素。人卵母细胞纺锤体组装主要由染色体和小的鸟苷三磷酸酶Ran介导,而独立于中心体或其他微管组织中心,整个过程大约需要16个小时。这种异常缓慢的过程与小鼠卵母细胞和其他物种中的有丝分裂纺锤体和减数分裂纺锤体形成鲜明对比,后者在建立双极纺锤体时很少变得不稳定,从而使减数分裂更有效并且更不容易出现分离错误。在人类卵母细胞减数分裂过程中组装的主轴显示出异常的动粒-微管附件比例很高,并且本质上是不稳定的。进入异常附件的后期阶段使人类卵母细胞处于染色体分离错误的风险中,为非整倍性的高发生率提供了一种机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号