首页> 外文期刊>RSC Advances >Ultrafast dynamics of a molecular rotor in chemical and biological nano-cavities
【24h】

Ultrafast dynamics of a molecular rotor in chemical and biological nano-cavities

机译:化学和生物纳米腔中分子转子的超快动力学

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Molecular rotors have become indispensable tools in monitoring several important processes in chemistry and biology owing to their sensitivity towards viscosity. Despite their importance, less attention has been paid to understanding the excited state properties of molecular rotors. Recently, Maroncelli and coworkers unraveled the excited state photochemistry of a julolidine based molecular rotor, 9-(2-carboxy-2-cyano) vinyl julolidine (CCVJ), and claimed that CCVJ is not a simple rotor probe. Unlike other molecular rotors, photoisomerization is believed to be the main non-radiative decay pathway for this molecule. Inspired by their report, herein, we tried to understand how the excited state dynamics of CCVJ is affected inside the nano-cavities of cyclodextrins (CDs) and human serum albumin (HSA) protein using steady-state and femtosecond fluorescence up-conversion techniques. We observed a pronounced enhancement in fluorescence quantum yield when CCVJ is encapsulated in CDs (beta- and gamma-CD) and HSA. Femtosecond up-conversion studies reveal that the ultrafast dynamics of CCVJ are drastically retarded inside the nano-cavities of CDs and protein. All these results suggest that photoisomerization, which is believed to be the major non-radiative decay pathway of CCVJ, is severely restricted inside the above mentioned bio-mimetic and biological nano-cavities. The molecular images of orientations of CCVJ inside the nano-cavities of CDs and protein have been discussed by theoretical and molecular modeling studies. We believe the present results might be helpful in exploiting this molecule more in biological and viscosity sensing applications.
机译:由于分子转子对粘度的敏感性,它们已成为监测化学和生物学中几个重要过程的必不可少的工具。尽管它们很重要,但是对了解分子转子的激发态特性的关注却很少。最近,Maroncelli和同事们揭示了基于Julolidine的分子转子9-(2-羧基-2-氰基)乙烯基Julolidine(CCVJ)的激发态光化学,并声称CCVJ不是简单的转子探针。与其他分子转子不同,光异构化被认为是该分子的主要非辐射衰变途径。受他们的报告启发,我们试图使用稳态和飞秒荧光上转换技术来了解CCVJ的激发态动态如何影响环糊精(CDs)和人血清白蛋白(HSA)蛋白质纳米腔内部。当CCVJ封装在CD(β-和γ-CD)和HSA中时,我们观察到了荧光量子产率的显着提高。飞秒升频转换研究表明,CCVJ的超快速动力学在CD和蛋白质的纳米腔内被大大抑制。所有这些结果表明,被认为是CCVJ的主要非辐射衰变途径的光异构化被严格地限制在上述生物模拟和生物纳米腔体内。通过理论和分子建模研究,探讨了CDV和蛋白质纳米腔内CCVJ取向的分子图像。我们相信目前的结果可能有助于在生物学和粘度传感应用中更多地利用这种分子。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号