...
首页> 外文期刊>RSC Advances >Design of a live biochip for in situ nanotoxicology studies: a proof of concept
【24h】

Design of a live biochip for in situ nanotoxicology studies: a proof of concept

机译:用于现场纳米毒理学研究的活生物芯片的设计:概念验证

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

This paper highlights the way in which eukaryotic cell and bacteria based biochips are relevant for nanotoxicological risk evaluation. Here we define NP-biochips as formatted surfaces containing nanoparticles (NPs). They are simple devices which can easily be used to generate quantitative data expressing the effects of NPs on biological material in parallelized medium throughput assays. Firstly we dropped NPs and bacteria onto an agarose layer, using fluorescent bacteria in order to follow by imaging the effects of these NPs on bacterial growth. Secondly we embedded the targeted NPs at precise spot locations in a matrix on which eukaryotic cells can adhere, and followed cell growth. We used titanium dioxide as model NPs for the concept validation. Both types of NP-biochip are realized in order to pattern NPs in 50 or 100 dried 400 mu m diameter spots on a glass plate, with less than 0.3% variation in concentration between spots. For anatase TiO2 NPs, we were able to record a non-toxic effect by measuring bacteria or eukaryotic cell survival. NPs are not internalized in bacteria; we thus used hyperspectral imaging to observe NPs on their surfaces. In contrast, NPs translocate in eukaryotic cells so we used fluorescent TiO2 and quantum dots to verify that NPs migrate from the NP-biochip matrix into bronchial cells. In order to illustrate the release of NP from the chip into the cell, we present the dose-response curve in the case of a toxic rutile TiO2 NP. These devices prevent cell and bacteria suffocation that is often observed in standard assays in wells due to NP precipitation. We believe that these tests realized on gel coated biochips are a rather realistic model for NP exposure in situ, imitating bacterial growth in biofilms and eukaryotic cells in tissues.
机译:本文重点介绍了基于真核细胞和细菌的生物芯片与纳米毒理学风险评估相关的方式。在这里,我们将NP-生物芯片定义为包含纳米颗粒(NP)的格式化表面。它们是简单的设备,可以很容易地用于生成定量数据,以在并行的介质通量测定中表达NP对生物材料的影响。首先,我们使用荧光细菌将NP和细菌滴加到琼脂糖层上,以便随后对这些NP对细菌生长的影响进行成像。其次,我们将靶向的NPs嵌入到真核细胞可以粘附的基质中的精确斑点位置,然后进行细胞生长。我们使用二氧化钛作为模型NP进行概念验证。实现两种类型的NP-生物芯片是为了在玻璃板上直径为50或100个干燥的400微米直径的斑点中对NP进行图案化,斑点之间的浓度变化小于0.3%。对于锐钛矿型TiO2 NP,我们能够通过测量细菌或真核细胞存活来记录无毒作用。 NP没有被细菌内在化。因此,我们使用高光谱成像来观察其表面上的NP。相反,NPs在真核细胞中易位,因此我们使用了荧光TiO2和量子点来验证NPs是否从NP生物芯片基质迁移到支气管细胞中。为了说明NP从芯片释放到细胞中,我们给出了有毒金红石型TiO2 NP的剂量反应曲线。这些设备可防止细胞和细菌窒息,这通常是由于NP沉淀而在标准测定中在孔中观察到的。我们相信,在凝胶包被的生物芯片上实现的这些测试是就地NP暴露而言相当真实的模型,它可以模仿生物膜中细菌的生长以及组织中的真核细胞。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号