...
首页> 外文期刊>RSC Advances >A green process for efficient lignin (biomass) degradation and hydrogen production via water splitting using nanostructured C, N, S-doped ZnO under solar light
【24h】

A green process for efficient lignin (biomass) degradation and hydrogen production via water splitting using nanostructured C, N, S-doped ZnO under solar light

机译:使用纳米结构的C,N,S掺杂的ZnO在太阳光下通过水分解来有效分解木质素(生物质)和制氢的绿色工艺

获取原文
获取原文并翻译 | 示例

摘要

Herein, we have reported the simultaneous water splitting and lignin (biomass) degradation using C, N and S-doped ZnO nanostructured materials. The synthesis of C, N and S-doped ZnO was achieved via calcination of bis-thiourea zinc acetate (BTZA) complex. Calcination of the complex at 500 degrees C results in the formation of C, N, and S doping in a mixed phase of ZnO/ZnS, whereas calcination at 600 degrees C gives a single phase of ZnO with N and S-doping, which is confirmed by XRD, XPS and Raman spectroscopy. The band gap of the calcined samples was observed to be in the range of 2.83-3.08 eV. Simultaneous lignin (waste of paper and pulp mills) degradation and hydrogen (H-2) production via water splitting under solar light has been investigated, which is hitherto unattempted. The highest degradation of lignin was observed with the sample calcined at 500 degrees C, i.e., C, N, S-doped ZnO/ZnS when compared to the sample calcined at 600 degrees C, i.e., N and S doped ZnO. The degradation of lignin confers the formation of a useful fine chemical as a by-product, i.e., 1-phenyl-3-buten-1-ol. However, excellent H-2 production, i.e., 580, 584 and 643 mmol h(-1) per 0.1 g, was obtained for the sample calcined at 500, 550 and 600 degrees C, respectively. The photocatalytic activity obtained is considerably higher as compared to earlier reported visible light active oxide and sulfide photocatalysts. The reusability study shows a good stability of the photocatalyst. The prima facie observations show that lignin degradation and water splitting is possible with the same multifunctional photocatalyst without any scarifying agent.
机译:在这里,我们已经报道了使用C,N和S掺杂的ZnO纳米结构材料同时进行水分解和木质素(生物质)降解。碳,氮和硫掺杂的ZnO的合成是通过煅烧双硫脲乙酸锌(BTZA)配合物实现的。在500摄氏度下煅烧复合物会导致在ZnO / ZnS混合相中形成C,N和S掺杂,而在600摄氏度下煅烧则会形成具有N和S掺杂的ZnO单相,即由XRD,XPS和拉曼光谱证实。观察到煅烧样品的带隙在2.83-3.08eV的范围内。已经研究了木质素(造纸厂和纸浆厂的废料)同时降解和通过在阳光下分解水制氢(H-2)的方法,这是迄今为止从未尝试过的。与在600℃下煅烧的样品,即N和S掺杂的ZnO相比,在500℃下煅烧的样品(即,C,N,S掺杂的ZnO / ZnS)观察到木质素的最高降解。木质素的降解赋予了副产物有用的精细化学品,即1-苯基-3-丁烯-1-醇。但是,分别在500、550和600摄氏度下煅烧的样品获得了极好的H-2生成量,即每0.1 g 580、584和643 mmol h(-1)。与早先报道的可见光活性氧化物和硫化物光催化剂相比,所获得的光催化活性要高得多。可重复使用性研究表明光催化剂具有良好的稳定性。表面上的观察结果表明,使用相同的多功能光催化剂而没有任何松散剂,木质素降解和水分解是可能的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号