首页> 外文期刊>RSC Advances >Phase-induced porous composite microspheres sintered scaffold with protein-mineral interface for bone tissue engineering
【24h】

Phase-induced porous composite microspheres sintered scaffold with protein-mineral interface for bone tissue engineering

机译:具有蛋白质-矿物界面的相诱导多孔复合微球烧结支架,用于骨组织工程

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Scaffolds for orthopedic reconstruction should best mimic the microenvironment of the bone to instil regenerative potential. In this study, a three-dimensional porous microsphere sintered scaffold that closely resembles bone micro-architecture has been fabricated. Synthesized nanohydroxyapatite (similar to 30-90 nm) using wet chemical precipitation and poly(hydroxybutyrate)/poly(epsilon-caprolactone) were blended to develop composite porous microspheres via emulsion induced phase separation. Brunauer-EmmettTeller analysis reveals presence of cylindrical mesopores in microspheres with surface area 10.64 m(2) g(-1), which on solventon-solvent sintering to scaffold, resembles trabecular section of rat sternum. The scaffold demonstrates desirable compressive strength (1.16 +/- 0.17 MPa) and compressive modulus (6.8 +/- 1.3 MPa) with slow degradation and microstructural stability for four weeks. Further, incorporation of bovine serum albumin (BSA) in the scaffold establishes protein-mineral interface and exhibits two-phase protein release mechanism (diffusion and polymer degradation). Pore interconnectivity and functional protein loading of scaffold have been evidenced by protein distribution analysis and secondary structural stability. The transverse section of MG63 cells cultured scaffolds with and without protein demonstrates cell infiltration and extension across the pores, while significantly higher proliferation is observed in protein scaffolds at day 7 (p < 0.05). Hence, the biomimetic scaffold with protein-mineral interface could be an ideal substitute for bone regeneration as it establish cell-matrix interaction.
机译:用于骨科重建的支架应最好模拟骨骼的微环境,以注入再生潜力。在这项研究中,已制造出非常类似于骨骼微结构的三维多孔微球烧结支架。使用湿化学沉淀法将合成的纳米羟基磷灰石(类似于30-90 nm)和聚(羟基丁酸酯)/聚(ε-己内酯)混合,通过乳液诱导相分离形成复合多孔微球。 Brunauer-EmmettTeller分析显示,微球中存在圆柱形中孔,表面积为10.64 m(2)g(-1),在溶剂/非溶剂烧结到支架上,类似于大鼠胸骨的小梁切面。支架表现出理想的抗压强度(1.16 +/- 0.17 MPa)和压缩模量(6.8 +/- 1.3 MPa),降解缓慢且微结构稳定了四个星期。此外,将牛血清白蛋白(BSA)掺入支架中可建立蛋白质与矿物质的界面,并表现出两阶段的蛋白质释放机制(扩散和聚合物降解)。支架的孔互连和功能性蛋白负载已通过蛋白分布分析和二级结构稳定性得到证实。在有和没有蛋白质的情况下,培养的MG63细胞的横断面均显示出细胞浸润和跨孔延伸,而在第7天在蛋白质支架中观察到明显更高的增殖(p <0.05)。因此,具有蛋白质-矿物质界面的仿生支架可以建立细胞-基质相互作用,因此是骨再生的理想替代品。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号