首页> 外文期刊>Rock Mechanics and Rock Engineering >Transgranular Crack Nucleation in Carrara Marble of Brittle Failure
【24h】

Transgranular Crack Nucleation in Carrara Marble of Brittle Failure

机译:卡拉拉脆性破坏大理石的晶间裂纹成核

获取原文
获取原文并翻译 | 示例
           

摘要

Understanding the microcrack nucleation is of a fundamental importance in the study of rock fracturing process. Due to variations in texture and mineralogy, different rocks may show different distinctive microcrack nucleation mechanisms. In order to understand the microcrack nucleation mechanisms in Carrara marble comprehensively, localized damage zones are artificially produced by loading specimens containing an array of en-echelon flaws in this study. Then, representative samples were cut from those loaded specimens and prepared for optical observation. Four types of microcrack nucleation mechanisms leading to the formation of transgranular cracks have been identified in Carrara marble. Type I and II mechanisms are favored by the distinctive polygonal shape of the crystal grains in Carrara marble. Local tensile stress concentration in these two mechanisms is attributed to grain sliding and divergent normal contact force, respectively. Type III mechanism is associated with the gliding along twin lamellae. The resultant tensile stress concentration could nucleate microcracks within the grain containing these lamellae or in the grain boundary. No microcracks in the adjoining grains were observed in this study. Our statistical analysis suggests that type III mechanism favors the nucleation of new cracks which are nearly perpendicular to the gently inclined twin lamellae and thus have a small angle with the maximum loading direction (about 15A degrees). Type IV mechanism operates in grains failed mainly due to compressive stress rather than tensile stress concentration. Sets of parallel microcracks of this mechanism seem to be related to the crystallographic planes of calcite. The microcracking results also suggest that most of the grain boundaries in damaged zone have been cracked at the loading about 80 % of the specimen strength, while transgranular cracks begin to occur at that time and flourish after about 90 % loading of the strength.
机译:在研究岩石压裂过程中,了解微裂纹成核作用至关重要。由于质地和矿物学的变化,不同的岩石可能显示出不同的微裂纹成核机制。为了全面了解卡拉拉大理石中的微裂纹成核机理,在本研究中,通过加载包含一系列梯形缺陷的标本来人工产生局部损坏区域。然后,从那些加载的样本中切出代表性样本,并准备进行光学观察。在卡拉拉大理石中已经发现了四种类型的微裂纹成核机制,这些微裂纹成核机制导致了跨晶裂纹的形成。卡拉拉大理石的晶粒独特的多边形形状有利于I型和II型机理。这两种机制中的局部拉伸应力集中分别归因于晶粒滑动和不同的法向接触力。 III型机制与沿双片滑行有关。所产生的拉伸应力集中可能使包含这些薄片的晶粒内或晶粒边界内的微裂纹成核。在这项研究中没有观察到相邻晶粒中的微裂纹。我们的统计分析表明,III型机制有利于新裂纹的成核,这些裂纹几乎垂直于缓倾斜的孪晶薄板,因此与最大载荷方向(约15A度)成小角度。 IV型机理在晶粒中起作用的原因主要是由于压缩应力而不是拉伸应力集中。这种机制的平行微裂纹组似乎与方解石的晶面有关。微裂纹的结果还表明,在大约80%的试样强度载荷下,损坏区域的大多数晶界都已破裂,而此时的跨晶裂纹开始发生,并在大约90%的强度载荷下开始蓬勃发展。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号