...
首页> 外文期刊>Respiratory physiology & neurobiology >Embryonic control of heart rate: examining developmental patterns and temperature and oxygenation influences using embryonic avian models.
【24h】

Embryonic control of heart rate: examining developmental patterns and temperature and oxygenation influences using embryonic avian models.

机译:胚胎的心率控制:使用胚胎禽类模型检查发育模式以及温度和氧合影响。

获取原文
获取原文并翻译 | 示例
           

摘要

Long-term measurements (days and weeks) of heart rate (HR) have elucidated infradian rhythms in chicken embryos and circadian rhythms in chicken hatchlings. However, such rhythms are lacking in emu embryos and only rarely observed in emu hatchlings. Parasympathetic control of HR (instantaneous heart rate (IHR) decelerations) occurs at approximately 60% of incubation in both precocial and altricial avian embryos, with sympathetic control (IHR accelerations) becoming more prevalent close to hatching. A large increase in avian embryonic HR occurs during hatching (presumably an energetically expensive process, i.e. increased oxygen consumption [Formula: see text] ), beginning during pipping when a physical barrier to O(2) conductance is removed. Alterations in ambient O(2) have little effect on early embryonic HR, likely due to the low rate of [Formula: see text] of early embryos and the fact that adequate O(2) delivery can occur via diffusion. As [Formula: see text] increases in advanced embryos and circulatory convection becomes important for O(2) delivery, alterations in ambient O(2) have more profound effects on embryonic HR. Early embryos demonstrate a wide ambient temperature (T(a)) tolerance range compared with older embryos. In response to a rapid decrease in T(a), embryonic HR decreases (stroke volume and blood flow are preserved) in an exponential fashion to a steady state (from which it can potentially recover if re-warmed). A more severe decrease in T(a) results in complete cessation of HR; however, depending on developmental age, embryos are able to survive severe cold exposure and cessation of HR for up to 24h in some instances. The development of endothermy can be tracked by measuring baseline HR during T(a) changes. HR patterns change from thermo-conformity to thermoregulation (reverse to T(a) changes). Further, IHR low frequency oscillations mediated by the autonomic nervous system are augmented at low T(a)s in hatchlings. Transitions of baseline HR during endothermic development are unique to individual avian species (e.g. chickens, ducks and emu), reflecting differences in life history.
机译:长期测量(天数和周数)的心率(HR)已阐明了鸡胚中的红外线节律和雏鸡的昼夜节律。然而,e胚胎缺乏这种节律,在e孵化中很少见到。副交感神经控制HR(瞬时心率(IHR)减速)发生在大约60%的孵化前和早产禽类胚胎的孵化中,交感神经控制(IHR加速)在孵化时越来越普遍。孵化过程中禽类胚胎的HR大量增加(大概是一个能源上昂贵的过程,即增加了耗氧量[公式:参见文本]),始于在剥皮过程中去除对O(2)电导的物理障碍。环境中O(2)的变化对早期胚胎HR的影响很小,这可能是由于早期胚胎的低比率以及通过扩散可以发生足够的O(2)传递这一事实。随着[公式:参见文本]在高级胚胎中的增加和循环对流对于O(2)的传递变得很重要,环境O(2)的变化对胚胎HR的影响更大。与较早的胚胎相比,早期的胚胎表现出较宽的环境温度(T(a))耐受范围。响应于T(a)的快速下降,胚胎HR以指数方式下降(保持中风量和血流量)到稳定状态(如果重新变暖则可能从中恢复)。 T(a)的更严重降低导致HR完全停止;然而,根据发育年龄,在某些情况下,胚胎能够经受严酷的冷暴露和HR停止长达24小时。可以通过测量T(a)变化期间的基线HR来追踪吸热的发展。 HR模式从热适形变为温度调节(与T(a)的变化相反)。此外,在孵化场中,在低T(a)时,由自主神经系统介导的IHR低频振荡会增加。吸热发展过程中基线HR的变化对于单个禽类物种(例如鸡,鸭和e)是唯一的,反映了生活史的差异。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号