...
首页> 外文期刊>Radiation measurements >Determination of the primary dose component and primary linear attenuation coefficient in a 6 MV photon beam using a small attenuator
【24h】

Determination of the primary dose component and primary linear attenuation coefficient in a 6 MV photon beam using a small attenuator

机译:使用小型衰减器确定6 MV光子束中的主要剂量成分和主要线性衰减系数

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

It is a common technique in radiotherapy treatment planning systems to simplify the calculations by splitting the radiation beam into two components: namely the primary and scattered components. The contributions of the two components are evaluated separately and then summed to give the dose at the point of interest. Usually the primary dose is obtained experimentally by extrapolating the ionization measured within the medium to zero-field size (Godden, 1983). This approach offers the opportunity to obtain the primary component of dose without the need for a non-linear extrapolation. It is based on a paper by Nizin and Kase from 1988. The primary dose can be obtained from four measurements of ionization in narrow beam geometry and two measurements of ionization in a large beam in a phantom. If these measurements are performed over a range of different depths, the primary linear attenuation coefficient can also be obtained. The value for the primary dose at dmax in a 10 cm × 10 cm field obtained in a 6 MV beam using this method is D p(dmax, 10 cm × 10 cm) = 0.925 Gy/100 MU for a 1 cm thick lead attenuator and is Dp(dmax, 10 cm × 10 cm) = 0.941 Gy/100 MU for a 2 cm thick lead attenuator. The primary linear attenuation coefficient is μ0 = 0.0445 ± 0.0007 cm -1. The obtained values of the primary dose component compare well with the extrapolation of the phantom scatter correction factor to zero-field size from measurements done in the same beam and also to literature (Rice and Chin, 1990). One can thus conclude that this method has the potential to provide an independent measurable verification of calculations of primary dose.
机译:放射治疗计划系统中的一种常见技术是通过将辐射束分为两个部分(即主要部分和散射部分)来简化计算。分别评估这两个成分的贡献,然后相加得出感兴趣点的剂量。通常,主要剂量是通过将在介质中测得的电离值外推至零场大小而通过实验获得的(Godden,1983年)。这种方法提供了获得剂量主要成分的机会,而无需进行非线性外推。它基于Nizin和Kase于1988年发表的一篇论文。一次剂量可以从在窄束几何中的四个电离测量值和在幻像中两个大束的电离测量值中获得。如果这些测量是在不同深度的范围内执行的,则也可以获得初级线性衰减系数。对于1 cm厚的铅衰减器,在6 MV光束中使用此方法获得的10 cm×10 cm场中dmax处的主要剂量值为D p(dmax,10 cm×10 cm)= 0.925 Gy / 100 MU。对于2 cm厚的铅衰减器,Dp(dmax,10 cm×10 cm)= 0.941 Gy / 100 MU。初级线性衰减系数为μ0= 0.0445±0.0007 cm -1。所获得的主要剂量成分的值与幻像散布校正因子外推到零场大小的结果很好地比较,该零场大小是在同一光束中进行的测量得出的,并且还与文献进行了比较(Rice和Chin,1990年)。因此,可以得出这样的结论,即该方法有潜力为一次剂量的计算提供独立的可测量验证。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号