首页> 外文期刊>Remote Sensing of Environment: An Interdisciplinary Journal >Characterizing forest canopy structure with lidar composite metrics and machine learning
【24h】

Characterizing forest canopy structure with lidar composite metrics and machine learning

机译:利用激光雷达合成指标和机器学习表征林冠结构

获取原文
获取原文并翻译 | 示例
           

摘要

A lack of reliable observations for canopy science research is being partly overcome by the gradual use of lidar remote sensing. This study aims to improve lidar-based canopy characterization with airborne laser scanners through the combined use of lidar composite metrics and machine learning models. Our so-called composite metrics comprise a relatively large number of lidar predictors that tend to retain as much information as possible when reducing raw lidar point clouds into a format suitable as inputs to predictive models of canopy structural variables. The information-rich property of such composite metrics is further complemented by machine learning, which offers an array of supervised learning models capable of relating canopy characteristics to high-dimensional lidar metrics via complex, potentially nonlinear functional relationships. Using coincident lidar and field data over an Eastern Texas forest in USA, we conducted a case study to demonstrate the ubiquitous power of the lidar composite metrics in predicting multiple forest attributes and also illustrated the use of two kernel machines, namely, support vector machine and Gaussian processes (GP). Results show that the two machine learning models in conjunction with the lidar composite metrics outperformed traditional approaches such as the maximum likelihood classifier and linear regression models. For example, the five-fold cross validation for GP regression models (vs. linear/log-linear models) yielded a root mean squared error of 1.06 (2.36) m for Lorey's height, 0.95 (3.43) m for dominant height, 5.34 (8.51) m2/ha for basal area, 21.4 (40.5) Mg/ha for aboveground biomass, 6.54 (9.88) Mg/ha for belowground biomass, 0.75 (2.76) m for canopy base height, 2.2 (2.76) m for canopy ceiling height, 0.015 (0.02) kg/m3 for canopy bulk density, 0.068 (0.133) kg/m2 for available canopy fuel, and 0.33 (0.39) m2/m2 for leaf area index. Moreover, uncertainty estimates from the GP regression were more indicative of the true errors in the predicted canopy variables than those from their linear counterparts. With the ever-increasing accessibility of multisource remote sensing data, we envision a concomitant expansion in the use of advanced statistical methods, such as machine learning, to explore the potentially complex relationships between canopy characteristics and remotely-sensed predictors, accompanied by a desideratum for improved error analysis.
机译:逐渐使用激光雷达遥感可以部分克服对冠层科学研究缺乏可靠观察的问题。这项研究旨在通过结合使用激光雷达综合指标和机器学习模型来改善机载激光扫描仪基于激光雷达的机盖特性。我们所谓的综合指标包括相对大量的激光雷达预测器,当将原始激光雷达点云减少为适合作为树冠结构变量的预测模型输入的格式时,它们往往会保留尽可能多的信息。这种复合指标的信息丰富的特性进一步得到了机器学习的补充,机器学习提供了一系列监督学习模型,这些模型能够通过复杂的,潜在的非线性功能关系将机盖特性与高维激光雷达指标相关联。我们使用美国东部德克萨斯州森林上的激光雷达和野外数据相吻合,进行了案例研究,以证明激光雷达综合指标在预测多个森林属性方面的无处不在,并且还说明了两种内核机器的使用,即支持向量机和高斯过程(GP)。结果表明,结合了激光雷达综合指标的两个机器学习模型的性能优于传统方法,例如最大似然分类器和线性回归模型。例如,GP回归模型(相对于线性/对数线性模型)的五重交叉验证得出的Lorey身高的均方根误差为1.06(2.36)m,主导身高的均方根误差为0.95(3.43)m,5.34(基本面积为8.51)m2 / ha,地上生物量为21.4(40.5)Mg / ha,地下生物量为6.54(9.88)Mg / ha,冠层底高度为0.75(2.76)m,冠层顶高为2.2(2.76)m ,冠层容积密度为0.015(0.02)kg / m3,可用冠层燃料为0.068(0.133)kg / m2,叶面积指数为0.33(0.39)m2 / m2。而且,与线性对应变量相比,GP回归的不确定性估计更能说明预测的冠层变量的真实误差。随着多源遥感数据可访问性的不断提高,我们设想伴随使用高级统计方法(例如机器学习)的扩展,以探索冠层特征与遥感预测变量之间潜在的复杂关系,并伴随着对改进的错误分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号