首页> 外文期刊>Remote Sensing of Environment: An Interdisciplinary Journal >Optimization of Geoscience Laser Altimeter System waveform metrics to support vegetation measurements
【24h】

Optimization of Geoscience Laser Altimeter System waveform metrics to support vegetation measurements

机译:优化Geoscience激光测高仪系统的波形指标以支持植被测量

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The Geoscience Laser Altimeter System (GLAS) has collected over 250. million measurements of vegetation height over forests globally. Accurate vegetation heights can be determined using waveform metrics that include vertical extent and extent of the waveform's trailing and leading edges. All three indices are highly dependent upon the signal strength, background noise and signal-to-noise ratio of the waveform, as the background noise contribution to the waveforms has to be removed before their calculation. Over the last six years, GLAS has collected data during thirteen observation periods using illumination from three different lasers. The power levels of these lasers have changed over time, resulting in variable signal power and noise characteristics. Atmospheric conditions vary continuously, also influencing signal power and noise. To minimize these effects, we optimized a noise coefficient which could be constant or vary according to observation period or noise metric. This parameter is used with the mean and standard deviation of the background noise to determine a noise level threshold that is removed from each waveform. An optimization analysis was used with a global dataset of waveforms that are near-coincident with waveforms from other observation periods; the goal of the optimization was to minimize the difference in vertical extent between spatially overlapping GLAS observations. Optimizations based on absolute difference in height led to situations in which the total extent was minimized as well; further optimizations reduced a normalized difference in height extent. The simplest optimizations were based on a constant value to be applied to all observations; noise coefficients of 2.7, 3.2, 3.4 and 4.0 were determined for datasets consisting of global forests, global vegetation, forest in the legal Amazon basin and boreal forests respectively. Optimizations based on the power level or the signal-to-noise ratio of waveforms best minimized differences in waveform extent, decreasing the percent root mean squared height difference by 25-54% over the constant value approach. Further development of methods to ensure temporal consistency of waveform indices will be necessary to support long-term satellite lidar missions and will result in more accurate and precise estimates of canopy height.
机译:地球科学激光测高仪系统(GLAS)已在全球范围内收集了超过2.5百万种植被高度的测量数据。可以使用波形度量来确定准确的植被高度,这些度量包括垂直范围以及波形的后沿和前沿的范围。这三个指标在很大程度上取决于波形的信号强度,背景噪声和信噪比,因为在计算波形之前必须去除对波形的背景噪声影响。在过去的六年中,GLAS使用来自三种不同激光的照明收集了十三个观测期的数据。这些激光器的功率水平随时间变化,从而导致可变的信号功率和噪声特性。大气条件不断变化,也影响信号功率和噪声。为了最大程度地减少这些影响,我们优化了噪声系数,该系数可以恒定,也可以根据观察周期或噪声指标而变化。此参数与背景噪声的平均值和标准偏差一起使用,以确定从每个波形中删除的噪声级别阈值。对全局波形数据集进行了优化分析,该波形数据集与其他观察周期的波形几乎是一致的。优化的目的是使空间重叠的GLAS观测值之间的垂直范围差异最小。基于高度绝对差的优化导致总范围也最小化的情况。进一步的优化减少了高度范围的标准化差异。最简单的优化基于要应用于所有观测值的恒定值。对于分别由全球森林,全球植被,合法亚马逊河流域的森林和北方森林组成的数据集,噪声系数分别确定为2.7、3.2、3.4和4.0。基于功率电平或波形的信噪比的优化可以最大程度地减小波形范围的差异,与恒定值方法相比,将均方根高度差百分比降低25-54%。为了支持长期的卫星激光雷达任务,有必要进一步开发确保波形索引的时间一致性的方法,这将导致对冠层高度的更准确和更精确的估计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号