首页> 外文期刊>Remote Sensing of Environment: An Interdisciplinary Journal >Assessment of the impacts of surface topography, off-nadir pointing and vegetation structure on vegetation lidar waveforms using an extended geometric optical and radiative transfer model
【24h】

Assessment of the impacts of surface topography, off-nadir pointing and vegetation structure on vegetation lidar waveforms using an extended geometric optical and radiative transfer model

机译:使用扩展的几何光学和辐射传递模型评估表面形貌,底点指向和植被结构对植被激光雷达波形的影响

获取原文
获取原文并翻译 | 示例
           

摘要

In order to prioritize the measurement requirements and accuracies of the two new lidar missions, a physical model is required for a fundamental understanding of the impact of surface topography, footprint size and off-nadir pointing on vegetation lidar waveforms and vegetation height retrieval. In this study, we extended a well developed Geometric Optical and Radiative Transfer (GORT) vegetation lidar model to take into account for the impacts of surface topography and off-nadir pointing on vegetation lidar waveforms and vegetation height retrieval and applied this extended model to assess the aforementioned impacts on vegetation lidar waveforms and height retrieval.Model simulation shows that surface topography and off-nadir pointing angle stretch waveforms and the stretching effect magnifies with footprint size, slope and off-nadir pointing angle. For an off-nadir pointing laser penetrating vegetation over a slope terrain, the waveform is either stretched or compressed based on the relative angle. The stretching effect also results in a disappearing ground peak return when slope or off-nadir pointing angle is larger than the "critical slope angle", which is closely related to various vegetation structures and footprint size. Model simulation indicates that waveform shapes are affected by surface topography, off-nadir pointing angle and vegetation structure and it is difficult to remove topography effects from waveform extent based only on the shapes of waveform without knowing any surface topography information.Height error without correction of surface topography and off-nadir pointing angle is the smallest when the laser beams at the toward-slope direction and the largest from the opposite direction. Further simulation reveals within 20° of slope and off-nadir pointing angle, given the canopy height as roughly 25 m and the footprint size as 25. m, the error for vegetation height (RH100) ranges from - 2 m to greater than 12. m, and the error for the height at the medium energy return (RH50) from - 1 m to 4. m. The RH100 error caused by unknown surface topography and without correction of off-nadir pointing effect can be explained by an analytical formula as a function of vegetation height, surface topography, off-nadir pointing angle and footprint size as a first order approximation. RH50 is not much affected by topography, off-nadir pointing and footprint size. This forward model simulation can provide scientific guidance on prioritizing future lidar mission measurement requirements and accuracies.
机译:为了优先进行两次新的激光雷达任务的测量要求和精度,需要一个物理模型来基本了解表面地形,覆盖区大小和离地底点对植被激光雷达波形和植被高度恢复的影响。在这项研究中,我们扩展了完善的几何光学和辐射传输(GORT)植被激光雷达模型,以考虑到表面形貌和离地底点对植被激光雷达波形和植被高度反演的影响,并将此扩展模型应用于评估模型仿真表明,表面形貌和离地底指向角的拉伸波形以及拉伸效果随着足迹尺寸,坡度和离地底指向角的增大而增大。对于在斜坡地形上穿透植被的低点指向激光,根据相对角度对波形进行拉伸或压缩。当坡度或离天底的指向角大于“临界坡度角”时,拉伸效果还会导致消失的地面峰返回,这与各种植被结构和足迹大小密切相关。模型仿真表明,波形形状受表面地形,离天底指向角和植被结构的影响,并且仅在不了解任何表面地形信息的情况下仅根据波形形状很难从波形范围中消除地形影响。当激光束沿倾斜方向射出时,表面形貌和最低天底指向角最小,相反方向的射出角最大。进一步的仿真表明,在冠层高度约为25 m,足迹尺寸为25. m的情况下,倾斜度和最低点指向角均在20°以内,植被高度(RH100)的误差范围为-2 m至大于12。 m,中等能量返回(RH50)处的高度误差为-1 m至4 m。 RH100误差是由未知的表面形貌引起的,并且没有校正离天底的指向效应,可以通过解析公式解释为植被高度,表面形貌,离天底的指向角度和足迹大小的函数,作为一阶近似值。 RH50不受地形,最低点指向和覆盖区大小的影响。这种正向模型仿真可以为确定未来激光雷达任务的测量要求和准确性的优先顺序提供科学指导。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号