首页> 外文期刊>Remote Sensing of Environment: An Interdisciplinary Journal >Hyperspectral vegetation indices and their relationships with agricultural crop characteristics
【24h】

Hyperspectral vegetation indices and their relationships with agricultural crop characteristics

机译:高光谱植被指数及其与农作物特性的关系

获取原文
获取原文并翻译 | 示例
       

摘要

The objective of this paper is to determine spectral bands that are best suited for characterizing agricultural crop biophysical variables. The data for this study comes from ground-level hyperspectral reflectance measurements of cotton, potato, soybeans, corn, and sunflower. Reflectance was measured in 490 discrete narrow bands between 350 and 1,050 nm. Observed crop characteristics included wet biomass, leaf area index, plant height, and (for cotton only) yield. Three types of hyperspectral predictors were tested: optimum multiple narrow band reflectance (OMNBR), narrow band normalized difference vegetation index (NDVI) involving all possible two-band combinations of 490 channels, and the soil-adjusted vegetation indices. A critical problem with OMNBR models was that of "over fitting" (i.e., using more spectral channels than experimental samples to obtain a highly maximum R-2 value). This problem was addressed by comparing the R-2 values of crop variables with the R-2 values computed for random data of a large sample size. The combinations of two to four narrow bands in OMNBR models explained most (64% to 92%) of the variability in crop biophysical variables. The second part of the paper describes a rigorous search procedure to identify the best narrow band NDVI predictors of crop biophysical variables. Special narrow band lambda (lambda(1)) versus lambda (lambda(2)) plots of R-2 values illustrate the most effective wavelength combinations (lambda(1) and lambda(2)) and bandwidths (Delta lambda(1) and Delta lambda(2)) for predicting the biophysical quantities of each crop. The best of these two-band indices were further tested to see if soil adjustment or nonlinear fitting could improve their predictive accuracy. The best of the narrow band NDVI models explained 64% to 88% variability in different crop biophysical variables. A strong relationship with crop characteristics is located in specific narrow bands in the longer wavelength portion of the red (650 to 700 nm), with secondary clusters in the shorter wavelength portion of green (500 nm to 550 nm), in one particular section of the near-infrared (900 nm to 940 nm), and in the moisture sensitive near-infrared (centered at 982 nm). This study recommends a 12 narrow band sensor, in the 350 nm to 1,050 nm range of the spectrum, for optimum estimation of agricultural crop biophysical information. (C) Elsevier Science Inc., 2000. [References: 52]
机译:本文的目的是确定最适合表征农作物生物物理变量的光谱带。这项研究的数据来自棉花,马铃薯,大豆,玉米和向日葵的地面高光谱反射率测量值。在350至1050 nm之间的490个离散窄带中测量了反射率。观察到的作物特征包括湿生物量,叶面积指数,株高和(仅棉花)单产。测试了三种类型的高光谱预测因子:最佳多重窄带反射率(OMNBR),涉及490个通道的所有可能两个波段组合的窄带归一化植被指数(NDVI),以及土壤调整后的植被指数。 OMNBR模型的一个关键问题是“过度拟合”的问题(即,使用比实验样品更多的光谱通道来获得高度最大的R-2值)。通过将作物变量的R-2值与为大样本量的随机数据计算的R-2值进行比较,可以解决此问题。 OMNBR模型中的两个到四个窄带的组合解释了大部分作物生物物理变量的变异(64%至92%)。本文的第二部分描述了严格的搜索过程,以识别作物生物物理变量的最佳窄带NDVI预测因子。 R-2值的特殊窄带lambda(lambda(1))与lambda(lambda(2))图显示了最有效的波长组合(lambda(1)和lambda(2))和带宽(Delta lambda(1)和Delta lambda(2))用于预测每种作物的生物物理量。对这两个波段指标中的最佳者进行了进一步测试,以查看土壤调整或非线性拟合是否可以提高其预测准确性。最好的窄带NDVI模型解释了不同作物生物物理变量之间64%至88%的变异性。与作物特性的强相关性位于红色的较长波长部分(650至700 nm)中的特定窄带中,而在绿色的较短波长部分(500 nm至550 nm)中具有次生簇,在该区域的一个特定部分中近红外(900 nm至940 nm)和对湿气敏感的近红外(以982 nm为中心)。这项研究建议在光谱范围为350 nm至1,050 nm的范围内使用12个窄带传感器,以最佳估计农作物的生物物理信息。 (C)Elsevier Science Inc.,2000年。[参考:52]。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号