...
首页> 外文期刊>Remote Sensing of Environment: An Interdisciplinary Journal >Anisotropic reflectance of snow observed from space over the arctic and its effect on solar energy balance
【24h】

Anisotropic reflectance of snow observed from space over the arctic and its effect on solar energy balance

机译:北极上空观测到的雪的各向异性反射及其对太阳能平衡的影响

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Advanced Very High Resolution Radiometer (AVHRR) images of arctic snow reflectance, observed from different satellite passes with the closest pass times on the same day, show different patterns that are related to the sun-satellite geometry. The variation of snow reflectance with view angle can be large or small, depending on the view geometry. Thus, the snow reflectances of a common target, observed from different viewing angles, can be very different and hard to compare. Unfortunately, none represent the actual physical snow albedo, and the error in the converted broadband top of atmosphere (TOA) albedo could easily be larger than 10%, which implies a great effect on the solar radiation balance at TOA. For an accurate estimate of the solar energy budget from satellite observations, and anisotropic correction is required not only for those reflectance images with obvious angular variation, but also for seemingly "isotropic" scenes because this latter case might incorrectly estimate the albedo under general conditions. Two methods, on based on a radiative transfer model and the other on National Oceanic and Atmospheric Administration's (NOAA) Earth Radiation Budget (ERB) experimental data, have been applied to AVHRR data to implement and anisotropic correction. The results show that both methods can remove the systematic variation of snow reflectance with view angle and can significantly reduce the large observed differences in reflectances from different satellite observations of a common snow target. The radiative transfer model-based method, however, unlike the NOAA experimental method, corrects the reflectances in the two AVHRR channels separately, has higher angular resolution than the NOAA experimental method, and can account for variations in snow condition (e.g., grain size). Moreover, the model-based anisotropic correction shows superior self-consistency compared to that produced by NOAA's experimental-based method. Finally, the model-based method provides a sound theoretical basis for anisotropic correction of satellite images of arctic snow reflectance. (C) Elsevier Science Inc., 2001. [References: 15]
机译:在同一天以最接近的通过时间从不同的卫星通道观察到的北极雪反射率的超高分辨率高分辨率辐射计(AVHRR)图像显示了与太阳卫星几何形状相关的不同模式。雪反射率随视角的变化可以大可小,具体取决于视图的几何形状。因此,从不同的视角观察到的共同目标的雪反射率可能会非常不同并且难以比较。不幸的是,没有一个能代表实际的物理雪反照率,而转换后的宽带大气顶(TOA)反照率的误差很容易大于10%,这对TOA的太阳辐射平衡有很大影响。为了通过卫星观测准确估算太阳能预算,不仅需要对角度变化明显的反射图像进行各向异性校正,而且对于看似“各向同性”的场景也需要进行各向异性校正,因为在一般情况下,后一种情况可能会错误地估算反照率。基于辐射传输模型的两种方法和基于美国国家海洋和大气管理局(NOAA)地球辐射预算(ERB)实验数据的两种方法已应用于AVHRR数据,以实现各向异性校正。结果表明,两种方法都可以消除雪反射率随角度的系统变化,并且可以显着减少来自同一降雪目标的不同卫星观测的较大反射率差异。但是,与NOAA实验方法不同,基于辐射转移模型的方法分别校正两个AVHRR通道中的反射率,比NOAA实验方法具有更高的角分辨率,并且可以解释雪况(例如晶粒大小)的变化。此外,与基于NOAA的基于实验的方法相比,基于模型的各向异性校正具有更好的自洽性。最后,基于模型的方法为北极雪反射率卫星图像的各向异性校正提供了良好的理论基础。 (C)Elsevier Science Inc.,2001年。[参考:15]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号